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 ΘΕΜΑ 1o  
 

A. Αρκεί να αποδείξουμε ότι για κάθε 1 2x , x Δ  ισχύει    1 2f x f x . 

- Αν 1 2x x , τότε προφανώς    1 2f x f x . 

- Αν 1 2x x ,τότε στο διάστημα  1 2x , x  η f ικανοποιεί τις υποθέσεις του θεωρήματος μέσης  

τιμής. Επομένως υπάρχει  1 2ξ x , x  τέτοιο, ώστε  
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 Επειδή το ξ είναι εσωτερικό σημείο του Δ, ισχύει,  f ξ 0  , οπότε 
   2 1
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   1 2f x f x . Αν  1 2x x , τότε ομοίως αποδεικνύεται ότι    1 2f x f x . 

Άρα σε όλες τις περιπτώσεις    1 2f x f x . 

 

Β. Μια συνάρτηση f λέμε ότι είναι παραγωγίσιμη σ’ ένα σημείο 0x  του πεδίου ορισμού της, αν  

    υπάρχει το
0
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 και είναι πραγματικός αριθμός. Το όριο αυτό ονομάζεται  

    παράγωγος  της f στο 0x  και συμβολίζεται με  0f x . Δηλαδή: 
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Γ. α. Σ                β. Σ                 γ. Λ             δ. Λ                ε. Λ 

 

ΘΕΜΑ 2o 
 

Α. α. Έστω z x yi  , x, y . Τότε x 2λ 1   και y 2λ 1  . Με αφαίρεση κατά μέλη  

          προκύπτει: x y 2λ 1 2λ 1 y x 2        . 
         Οι εικόνες των μιγαδικών z βρίσκονται επί της ευθείας ε: y x 2  . 

      β. Έστω ΟΚ η απόσταση της ευθείας ε από την αρχή Ο των αξόνων. 

         Ο μιγαδικός 0z  με το ελάχιστο μέτρο έχει εικόνα το σημείο Κ. 

         Επειδή ελ 1  και ε ΟΚ , ισχύει: ε ΟΚ ΟΚλ λ 1 λ 1      . 

         Άρα η ΟΚ έχει εξίσωση y x  . Οι συντεταγμένες του σημείου Κ 

         είναι η λύση του συστήματος των εξισώσεων των ε, ΟΚ. Είναι  
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, άρα  K 1, 1  

         και 0z 1 i   

 

  Β. Έστω w α βi  , τότε: 
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        Άρα  w 4 i    ή w 3 i     

 

ΘΕΜΑ 3o 
 

Α. Παρατηρούμε ότι   0f 0 α ln1 0   , άρα    f x f 0 . Δηλαδή η f παρουσιάζει ελάχιστο στο  

      εσωτερικό σημείο 0x 0  του πεδίου ορισμού της. 

       Επειδή η f είναι παραγωγίσιμη στο  1,   με   x 1
f x α ln α

x 1
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
, λόγω του θεωρήματος  

       Fermat, ισχύει ότι:   0 1
f 0 0 α ln α 0 ln α 1 α e
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B. Για α e  είναι    xf x e ln x 1 ,  x 1     . 

     α. Είναι   x 1
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         Επειδή   f x 0   για κάθε x 1  , η f είναι κυρτή. 

    

  β. Επειδή   f x 0  , η f   είναι γνησίως αύξουσα στο  1,  , οπότε για κάθε 1 x 0    είναι 

           f x f 0 0   , άρα η f είναι γνησίως φθίνουσα στο  1,0 .  

        Για κάθε x 0  είναι    f x f 0 0   , άρα η f είναι γνησίως αύξουσα στο  0, . 

      

γ. 
   
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, x 1  και x 2 . 

       Έστω            g x x 2 f β 1 x 1 f γ 1      ,  x 1,2 . 

       H g είναι συνεχής στο διάστημα  1,2  ως άθροισμα συνεχών συναρτήσεων. 

      Είναι              g 1 1 2 f β 1 1 1 f γ 1 1 f β         και    

                   g 2 2 2 f β 1 2 1 f γ 1 f γ 1        . 

      Επειδή η f είναι γνησίως φθίνουσα στο  1,0 , για κάθε 1 x 0    είναι    f x f 0 1   και  

      επειδή η f είναι γνησίως αύξουσα στο  0, , για κάθε x 0  είναι    f x f 0 1  . 

      Άρα  f x 1  για κάθε    x 1,0 0,    , οπότε και      f β 1 1 f β 0 g 1 0       και  

           f γ 1 f γ 1 0 g 2 0      . 

      Επειδή    g 1 g 2 0 , λόγω του θεωρήματος Bolzano, υπάρχει  0x 1,2  τέτοιο, ώστε  
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ΘΕΜΑ 4o 
 

α.  Επειδή οι συναρτήσεις  f t  και  tf t  είναι συνεχείς στο  0,2 , οι συναρτήσεις  
x

0
tf t dt  και  

     
x

0
f t dt  είναι παραγωγίσιμες, οπότε η G είναι παραγωγίσιμη στο  0,2  ως πράξεις  

    παραγωγίσιμων συναρτήσεων, άρα η G είναι και συνεχής στο διάστημα αυτό. 

     Επειδή 
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     είναι συνεχής στο  0,2 . 

 

β. Όπως είδαμε στο προηγούμενο σκέλος η G είναι παραγωγίσιμη στο  0,2  οπότε και στο  0,2   

   με  
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γ. Είναι  G 0 3  και  
 
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    Όμως        
2 2 2

0 0 0
t 2 f t dt 0 tf t dt 2 f t dt 0       , άρα  G 2 3 , δηλαδή    G 0 G 2 . 

    Επειδή η G είναι συνεχής στο  0,2  και παραγωγίσιμη στο  0,2 , λόγω του θεωρήματος Rolle,  

    υπάρχει  α 0,2  τέτοιο, ώστε  
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δ. Η G ικανοποιεί τις προϋποθέσεις του θεωρήματος μέσης τιμής στο διάστημα  0,α , οπότε  

    υπάρχει  ξ 0,α  τέτοιος, ώστε:    
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Στέλιος Μιχαήλογλου 


