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ΘΕΜΑ Α 
 

Α1. Αρκεί να αποδείξουμε ότι για οποιαδήποτε 1 2, x x  ισχύει 1 2( ) ( )f x f x . Πράγματι 

 Αν 1 2x x , τότε προφανώς 1 2( ) ( )f x f x .                                   

 Αν 1 2x x , τότε στο διάστημα 1 2[ , ]x x  η  f  ικανοποιεί τις υποθέσεις του θεωρήματος 

      μέσης τιμής.  Επομένως, υπάρχει 1 2( , ) x x  τέτοιο, ώστε    2 1

2 1

( ) ( )
( )


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f x f x
f

x x
    (1)                             

     Επειδή το ξ είναι εσωτερικό σημείο του Δ, ισχύει ( ) 0 f  ,οπότε, λόγω της (1),  

     είναι 1 2( ) ( )f x f x .                                           

 Αν 2 1x x , τότε ομοίως αποδεικνύεται ότι. 1 2( ) ( )f x f x .Άρα σε κάθε περίπτωση  είναι 1 2( ) ( )f x f x .    

Α2.  Η συνάρτηση  f  στρέφει τα κοίλα προς τα κάτω ή είναι κοίλη στο Δ, αν η f  είναι γνησίως φθίνουσα  

       στο  εσωτερικό  του Δ.                                              

Α3. Μια συνάρτηση  f  με πεδίο ορισμού Α θα λέμε ότι παρουσιάζει στο 0 x A  (ολικό) μέγιστο, το 0( )f x ,  

        όταν 0( ) ( )f x f x  για κάθε  x A    

Α4. α) Λ β) Σ γ) Σ δ) Σ ε) Λ 

      

ΘΕΜΑ Β 
 

Β1. Έστω , ,  z x yi x y . 

       2 2 22 4 2 0 2 2 4 2 0           z z z i i x y xi i    2 22 2 2 1 0     x y x i            
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  . Άρα 1 1 z i  και 2 1 z i .    
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Β3. 1 24 3 4 4 1 3 4 5             u w z z i u i i i i i ,άρα ο γεωμετρικός τόπος της εικόνας Μ  του  

         μιγαδικού u είναι κύκλος με κέντρο  0,3K  και ακτίνα 5 .       

 

ΘΕΜΑ Γ 

Γ1.  Η h είναι δύο φορές παραγωγίσιμη στο με  
1

1
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  και              
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

  h  h κοίλη στο .  

Γ2.1
ος

 τρόπος:  Είναι  
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0
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h x h

e
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    h x h x    0 h x h   (1)            
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      Επειδή η h είναι κοίλη η h είναι γνησίως φθίνουσα στο , οπότε από την (1) έχουμε: 0x            

    2
ος

 τρόπος:      

     

e
ln

e 1h(2h ( ))e e 
x             

1
h 2h x 1 ln e 1 h 1 2h x 1 h x h 0 x 0

2
               

Γ3. Είναι     
1

lim lim ln 1 lim ln limln 0
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e e
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e e
. Άρα η ευθεία 0y , δηλαδή ο άξονας x΄x, είναι οριζόντια  

        ασύμπτωτη της hC  στο  .                 

       Είναι
   ln 1
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            
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     Η ευθεία y x είναι πλάγια ασύμπτωτη της hC στο  .              

Γ4.    
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     Πρόσημο της φ 

     1ος τρόπος: Είναι      2
ln ln 1 ln 2 ln

1
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x
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e
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                            Για κάθε 0x  είναι  
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1 2 1 1 ln 0 0
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      2ος τρόπος: Είναι      ( ) ln 2 ( ) (0)   x xx e h x e h x h   

                            Οπότε    
 

0 ( ) ln 2 0 ( ) ln 2 ( ) (0) 0



          

h

xx e h x h x h x h x .  

     3ος τρόπος: Λόγω του Θ.Μ.Τ για την h,  0, , 0  x x :  

                          
   

            
0

0 0


        x xh x h
h xh h x h xe h e h x h

x
   , άρα   0x   

                          Επειδή η φ είναι συνεχής ως σύνθεση και πράξεις συνεχών συναρτήσεων και   0x  στο  0,1 , το  

                         ζητούμενο εμβαδόν είναι: 

           
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ΘΕΜΑ Δ 
 

Δ1.    

0
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0 0 0
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lim lim lim 1 0
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x
 άρα η f είναι συνεχής στο 0 0x .               
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     Για κάθε 0x  η f είναι παραγωγίσιμη με  
2

1 
 

x xxe e
f x

x
.                    

    Έστω   1,   x xg x xe e x . Η g είναι παραγωγίσιμη με      x x x xg x xe e e xe                  

     Για κάθε 0x  είναι    0 0,


    g x g . Για κάθε 0x  είναι    0 0 g x g . 

     Για κάθε 0x  είναι    0 ,0


    g x g . Για κάθε 0x  είναι    0 0 g x g .                   

     Είναι   0g x  για κάθε 0x , άρα   0 f x  για κάθε 0x  και επειδή η f είναι συνεχής στο  

    0 0x , είναι γνησίως αύξουσα στο .                   

Δ2. α)  Πρόσημο f 

    1ος τρόπος: Για κάθε 0x  είναι 1xe , άρα  
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x

 και για κάθε 0x  είναι 1xe , άρα 
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. Δηλαδή   0f x  για κάθε x .       

  2ος τρόπος:    
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  Η f είναι συνεχής και γνησίως αύξουσα στο , άρα έχει σύνολο τιμών    f A 0,   , 

  οπότε   0f x  για κάθε x . 

 Επίλυση εξίσωσης 

 1ος τρόπος: Έστω    
1

, 
x

F x f t dt x . Είναι     0


    F x f x F           

                     
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                     Είναι  
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                     Επειδή η f είναι κυρτή η f  είναι γνησίως αύξουσα άρα και 1 1  στο .              

                     Η (1) γίνεται:    
1 1

0 0


   f x f x          

    2ος τρόπος:  Επειδή   0f x  για κάθε x , είναι   0 f u du



με    και   0 f u du




 με   .            

                            Άρα για να είναι   0 f u du



 πρέπει   , δηλαδή  

1
......

2
  f x  

Δ2.β) Είναι     y t f x t  και         y t f x t x t .                          

      Είναι        
1

2
2

     x t y t y t x t                    

              
1

2
    y t f x t x t x t       f x t x t     

1 11
0 0

2



     f x t f x  

      Τότε    0 1 y t f , άρα ζητούμενο σημείο το  0,1 .                           

Δ3. Είναι           
22 2 2

1 2 2 , 0       xg x xf x e x e e x x     

     Η g είναι παραγωγίσιμη στο  0,  με       2 2 1       
x xg x e e x x e e .              

    Έστω    1 , 0   xh x x e e x . 

    Η h είναι παραγωγίσιμη στο  0,  με    xh x xe . Για κάθε 0x είναι    0 0,


    h x h .    

       Ρίζα της h 

    1ος τρόπος : Είναι     21 0, 2 2 0     h e h e e , δηλαδή    1 2 0h h  και επειδή η h είναι συνεχής στο  

                           1,2 , από το θ.Β υπάρχει  1,2  τέτοιο, ώστε   0h  .      

    2ος τρόπος : Είναι    1 2g g  και g συνεχής στο  1,2 και παραγωγίσιμη στο  1,2 , οπότε λόγω του  
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                         θ.Rolle υπάρχει  1,2  τέτοιο, ώστε    0 0   g h   

     Για κάθε 0 x   είναι     0 h x h   και για κάθε x   είναι     0 h x h  .    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Για κάθε  0,1x  είναι    0 0,1


   g x g . Για κάθε  1,x   είναι    0 1,


   g x g  . 

       Για κάθε  ,2x   είναι    0 ,2


   g x g   και για κάθε  2, x  είναι    0 2,


    g x g . 

        Η g έχει δύο τοπικά ελάχιστα και ένα τοπικό μέγιστο.       

     

 2ος τρόπος για όλο το Δ3 

Παρατηρούμε ότι    1g x g  και    2g x g   για κάθε x . Δηλαδή η g παρουσιάζει ελάχιστο στα 1 1x  και 

2 2x .               

Επειδή η g είναι συνεχής στο  1,2  θα παρουσιάζει μέγιστη τιμή στο διάστημα αυτό, η οποία είναι διαφορετική από τα 

άκρα 1 και 2, οπότε θα παρουσιάζεται σε εσωτερικό σημείο ρ του  1,2 . Άρα η g έχει δύο τοπικά ελάχιστα και ένα 

τοπικό μέγιστο.    
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