
Unit 6: Algorithms

Lesson 1: Algorithms Solve Problems
Lesson 2: Algorithm Efficiency
Lesson 3: Unreasonable Time
Lesson 4: The Limits of Algorithms
Lesson 5: Distributed Algorithms
Lesson 6: Assessment Day

Unit 6 - Lesson 1
Algorithms Solve Problems

Prompt:

What makes two pieces of code “the same”?

Could there ever be two pieces of code that
you consider to be “the same” even if they

aren’t identical?

Unit 6 Lesson 1 - Warm Up

Go around the room and write down your answers to these problems.

Problems
1. Find a person whose birthday is before yours
2. Find a person whose birthday is after yours
3. Find the person whose birthday is the closest before yours
4. Find the person whose birthday is the closest after yours
5. Find the person whose birthday is closest to yours
6. Find the person with an equal number of birthdays before and after theirs
7. Find the two people with the closest birthdays in the room
8. Find the shortest period of time in which three people have birthdays
9. Find the shortest period of time in which four people have birthdays

10. Find the longest period of time in which no one has a birthday

Unit 6 Lesson 1 - Activity

Prompt:
Share with someone how you went

about solving each of these problems.

Which problems did you need to do
something similar in order to solve

them?

Unit 6 Lesson 1 - Activity

Algorithm 1

MOVE_FORWARD()
TURN_RIGHT()
MOVE_FORWARD()
TURN_RIGHT()
MOVE_FORWARD()
TURN_RIGHT()
MOVE_FORWARD()
TURN_RIGHT()

Algorithm 2

REPEAT 2 TIMES
{
 MOVE_FORWARD()
 MOVE_FORWARD()
 TURN_RIGHT()
 MOVE_FORWARD()
 TURN_RIGHT()
}

Unit 6 Lesson 1 - Activity

count ← 0

count < 4

MOVE_FORWARD()
TURN_RIGHT()

count ← count + 1

true

End

StartAlgorithm 4

false

count ← 0

count < 2

MOVE_FORWARD()
MOVE_FORWARD()
turnCount ← 0

true

End

Start

Algorithm 6

false

Algorithm 5

REPEAT 2 TIMES
{
 REPEAT 2 TIMES
 {
 MOVE_FORWARD()
 }
 REPEAT 3 TIMES
 {
 TURN_LEFT()
 }
 MOVE_FORWARD()
 REPEAT 3 TIMES
 {
 TURN_LEFT()
 }
}

turnCount
< 3

TURN_LEFT()
turnCount ← turnCount + 1

MOVE_FORWARD()
TURN_RIGHT()

count ← count +
1

Algorithm 3

moves ← [“F”, “R”, “F”, “R”, “F”, “R”, “F”, “R”]
FOR EACH move IN moves
{
 IF (move = “F”)
 {
 MOVE_FORWARD()
 }
 ELSE
 {
 TURN_RIGHT()
 }
}

false true

With your partner decide which of these programs are “the same” as one another.

Prompt:
Discuss with another group

which of these algorithms are “the
same” as one another?

How did you decide that?

Unit 6 Lesson 1 - Activity

Iteration
Doing some steps over and over

Unit 6 Lesson 1 - Wrap Up

Problem: a general description of a task that can (or cannot) be solved with an algorithm
Algorithm: a finite set of instructions that accomplish a task.

There are usually many algorithms to solve the same problem, and many ways to write or express
one algorithm including natural language, psuedocode, diagrams, and are implemented using
programming code. All algorithms can be created by combining steps in three different ways.

Sequencing
Putting steps in an order

Selection
Deciding which steps to do next

Unit 6 Lesson 1 - Wrap Up

Prompt:

How did today’s activities change the
way you think about algorithms and

problems?

Unit 6 - Lesson 2
Algorithm Efficiency

Prompt:

Have you ever lost a pencil in a
backpack? What are the steps you take

to find the pencil?

Unit 6 Lesson 2 - Warm Up

Algorithm Efficiency
You and your partner should have:

Sticky Notes
Your Journal

Unit 6 Lesson 2 - Activity

AP CSP
Journal

Unit 6 Lesson 2 - Activity

3 Volunteers:

● Navigate to the second level
on Code Studio.

● Click to generate your raffle
ticket number.

● Write the number on a sticky
note.

● Come up to the front of the
room.

Unit 6 Lesson 2 - Activity

Problem: Figure out if anyone has
the winning raffle ticket

Instance: A list of tickets plus the
winning number

Let's check if anyone has the
winning number!

Do This: Check for the winning
number, by revealing your numbers,
one by one.

Unit 6 Lesson 2 - Activity

Prompt:
How many steps did it take to find out if anyone

had the winning ticket? What is the greatest
possible number of steps it could take for this

instance?

Unit 6 Lesson 2 - Activity

Prompt:

What if we had six volunteers? The whole
class? The whole school?

What is the pattern here?

Unit 6 Lesson 2 - Activity

inputs steps

Instance 3 3

Instance 6 6

Instance 10 10

Instance 100 100 1 2 3 4 5 6 7 8 9 10

10

9
8
7
6
5
4
3
2
1

inputs

st
ep

s

Unit 6 Lesson 2 - Activity

With a partner…

Do This:
● Use the ticket generator to generate

seven tickets. Write down the numbers
on separate sticky notes.

● Organize the sticky notes in numerical
order.

● Copy one of the numbers on to a
separate sticky note. This is the number
you are searching for.

117 232 245 410 705 716 833

705

Unit 6 Lesson 2 - Activity

Challenge: Create an algorithm to determine if a given
number is in a list of sorted numbers.

● The search can start at any of the sticky notes

● You can "jump" over sticky notes. In other words, you don't need to search the stickies in order.

● You can determine which sticky notes to search next based on the current sticky note you are
checking.

● The goal is to make the determination in the least steps possible, but don't forget your number
could be anywhere in the list - what is the worst possible case? What is the greatest number of
comparison steps it would take to find any number in your list using your current algorithm?

Unit 6 Lesson 2 - Activity

Share & Compare: Partner up with another group.
Share your algorithms and practice running both fully.
Determine which one is "faster" or takes the least
amount of comparison steps.

Unit 6 Lesson 2 - Activity

1. Find the middle number in the list. Compare that number to the given
number. If the middle number is less than the given number, remove all of
the cards to the left (including the middle number). If the middle number is
more than the given number, remove all of the cards to the right (including
the middle number).

2. Find the middle number in this shorter list. Follow the instructions in Step
#1 for comparing.

3. Find the middle number in this new shorter list. Follow the instructions in
Step #1 for comparing.

You have found your number!

Do This: Now try this algorithm. See how it compares to your own.

Binary Search:

Unit 6 Lesson 2 - Activity

117 232 245 410 705 716 833

705 705705

🔍
compare compare compare
GREATER

THAN EQUAL TO! LESS
THAN

STEP 1 STEP 3 STEP 2

We found the
number! 705 is in

the list.

705

Unit 6 Lesson 2 - Activity

Do This: Now try the Binary Search algorithm for different instances. We've done a few
for you! Copy the instance table to your journal and plot the points on the graph.

inputs steps

Instance 1

Instance 3

Instance 5

Instance 7 3

Instance 9

Instance 15 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

1
2
3

4

inputs
st

ep
s

Unit 6 Lesson 2 - Activity

There's another way of thinking about this. Can you see the pattern?

inputs steps

Instance 1

Instance 3

Instance 5

Instance 7 3

Instance 9

Instance 15 4

1

2

3

4

How many bits does it take to represent 1 in Binary?

1
What about 7?

111
And 15?

1111

Unit 6 Lesson 2 - Activity

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

Here's our two search algorithms we've
explored. The first is linear. As we add
more inputs, the number of steps grows
at the same rate.

The second represents what
happens with Binary Search. Notice
how it grows at a much slower rate!
Binary Search is faster than Linear
search, BUT the data must be
sorted.

LIN
EAR

Binary Search

Unit 6 Lesson 2 - Wrap Up

Prompt:
If I had one input, which algorithm would I use
to get my answer with the fewest amount of

steps?

What if I had five?

What about one hundred?

Efficiency: a measure of how many steps
are needed to complete an algorithm

Linear Search: a search algorithm which
checks each element of a list, in order, until
the desired value is found or all elements
in the list have been checked.

Binary Search: a search algorithm that
starts at the middle of a sorted set of
numbers and removes half of the data; this
process repeats until the desired value is
found or all elements have been
eliminated.

Unit 6 Lesson 2 - Wrap Up

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

LIN
EAR

Binary Search

Unit 6 - Lesson 3
Unreasonable Time

Prompt:

What does it mean to say one
algorithm is “more efficient” than

another?

Unit 6 Lesson 3 - Warm Up

The Pair Raffle
The winners are any two tickets that
adds to the winning number.

The winning number is 1000.

Do This
Generate a ticket
Silently move around the room.
See if you’re a part of a winning pair!

Unit 6 Lesson 3 - Activity

Unit 6 Lesson 3 - Activity

The Group Raffle
The winners are any group of (from one
ticket up to all of them) that adds to the
winning number.

The winning number is 2500.

Do This
Generate a ticket
Move around the room (you can talk this
time
See if you’re part of a winning group!

Unit 6 Lesson 3 - Activity

Prompt
Which raffle felt like it was more difficult to

check? Why?

Unit 6 Lesson 3 - Activity

We could write an algorithm that goes through every
possible “check” for the pair raffle or the group raffle.

Let’s see how many checks there are!

With your partner fill in the two tables on the activity guide.

Unit 6 Lesson 3 - Activity

Share your responses with another group!

Unit 6 Lesson 3 - Activity

tickets checks

2 1

3 3

4 6

5 10

8 28

 1 2 3 4 5 6 7 8 9 10

10

9
8
7
6
5
4
3
2
1

tickets

ch
ec

ks

The exact formula for this
relationship is

(n2 - n)/2

You don’t need to know that
formula, but you should know
that because of the
“n-squared” term the graph
curves up.

Any algorithm whose
efficiency includes an n2, n3,
n4 … is called polynomial.

Pair raffle

Unit 6 Lesson 3 - Activity

tickets checks

2 3

3 7

4 15

5 31

8 255

 1 2 3 4 5 6 7 8 9 10

10

9
8
7
6
5
4
3
2
1

tickets

ch
ec

ks

The exact formula for this
relationship is

(2n) - 1

You don’t need to know that
formula, but you should know
that because of the “2 to the
n” term the graph curves up
very quickly.

Any algorithm whose
efficiency includes an 2n, 3n,
4n … is called exponential.

Group raffle

Unit 6 Lesson 3 - Activity

There's another way of thinking about this.

tickets checks

1 1

2 3

3 7

4 15

5 31

8 255

1
The number of checks is the largest number you can
make with that many bits.

111

1111

11

Unit 6 Lesson 3 - Activity

Reasonable or Unreasonable Time?
● Click run to start the app.
● Move the slider and see what

happens.

Discuss with a partner:
a. Which of these algorithms run

in a reasonable amount of
time?

b. Which run in an unreasonable
amount of time?

← Sorted Raffle

← Normal Raffle

← Pair Raffle

← Group Raffle

Unit 6 Lesson 3 - Activity

Linear / Normal Raffle
Reasonable

Log / Sorted Raffle
Reasonable

Polynomial / Pair Raffle
Reasonable

Exponential / Group Raffle
Unreasonable

Polynomial and Exponential both curve up.
Why do you think only exponential is considered “unreasonable”?

tickets

ch
ec

ks

Unit 6 Lesson 3 - Activity

Tickets Sorted Raffle
log

Normal Raffle
linear

Pair Raffle
polynomial

Group Raffle
exponential

10 4 Checks 10 checks 100 checks 1,024 checks

20 5 checks 20 checks 400 checks 1,048,576 checks

100 7 checks 100 checks 10,000 checks 1.26 * 1030 checks

1000 10 checks 1,000 checks 1,000,000 checks 1.07 * 10301 checks

10,000 14 checks 10,000 checks 100,000,000 checks 2.00 * 103010 checks

100,000 17 checks 100,000 checks 10,000,000,000 checks 9.99 * 1030102 checks

Polynomial is bad but exponential gets
unreasonably large extremely quickly.

At this point
there are more
checks than
atoms in the
universe

Reasonable Time: Algorithms with a polynomial
efficiency or lower (constant, linear, square, cube, etc.) are
said to run in a reasonable amount of time.

Unreasonable Time: Algorithms with exponential or
factorial efficiencies are examples of algorithms that run in
an unreasonable amount of time.

Unit 6 Lesson 3 - Wrap Up

Unit 6 Lesson 3 - Wrap Up

Prompt:
Your school is considering running the
group raffle at an upcoming assembly

to give away a prize.

 Write a brief explanation of what
advice you would give them.

Unit 6 - Lesson 4
The Limits of Algorithms

Prompt:

What is the difference between a reasonable
and unreasonable time algorithm?

Unit 6 Lesson 4 - Warm Up

Traveling Salesman
You should have:

Your journal
Pen/pencil

Unit 6 Lesson 4 - Activity

AP CSP
Journal

Unit 6 Lesson 4 - Activity

Prompt: How many different paths can you find to
visit all of your friends' houses?

Rules:
● You must start and end at your own house.
● You can only visit each house once.

⌂
⌂ ⌂

⌂

Unit 6 Lesson 4 - Activity

⌂
⌂ ⌂

⌂ ⌂
⌂ ⌂

⌂ ⌂
⌂ ⌂

⌂
Here are a few different paths you might take.

Prompt:
What do you need to know to
determine the best path?

Unit 6 Lesson 4 - Activity

⌂
⌂ ⌂

⌂ ⌂
⌂ ⌂

⌂ ⌂
⌂ ⌂

⌂

Distance!

1 1

1

1 1

1

1 1
2

22
2

Total: 4 Total: 6 Total: 6

Unit 6 Lesson 4 - Activity

Prompt: What if we had a lot more places to visit? How would
we determine the best path?

⌂
⌂

⌂ ⌂

⌂
⌂

⌂

⌂
⌂

⌂

⌂

⌂

⌂

⌂⌂
⌂

⌂

⌂

⌂

⌂

Unit 6 Lesson 4 - Activity

This is known as the Traveling Salesman Problem.

For every new place to visit, the number of options for possible paths increases
factorialy.

Number of houses to visit Number of steps to check for the
"best" path

1 1

2 2

3 6

4 24

5 120

6 720

7 5,040

8 40,320

9 362,880

10 3,628,800

Unit 6 Lesson 4 - Activity

Factorial fun: n!
Number of houses to
visit

Number of steps
to check for the
"best" path

1 1

2 2

3 6

4 24

5 120

6 720

7 5,040

8 40,320

9 362,880

10 3,628,800

Here's how n! works:

Multiply all whole numbers from the given number
down to the number 1.

For example:
Instance: 4 houses to visit

4 x 3 x 2 x 1 = 24

Instance: 7 houses to visit

7 x 6 x 5 x 4 x 3 x 2 x 1 = 5,040

That's a lot of possible paths
to check for only 10 houses!

Unit 6 Lesson 4 - Activity

Problems

Any task that may (or may not) be solved with an algorithm.
Sorting a list is a problem. Sorting the list (2, 3, 1, 7) is an instance of that problem.

Decision Problems

“Is there a path?”

Optimization Problems

“What’s the shortest path”?

Unit 6 Lesson 4 - Activity

The Traveling Salesman Problem can
be solved with an algorithm, which
checks each possible option.

BUT, it would take massive amounts of
computing power to compare every
single option, especially as the number
of homes to visit (otherwise known as
nodes) increases.

Therefore, it would take an
unreasonable amount of time for the
solution to be calculated for most
instances of the problem.

Unit 6 Lesson 4 - Activity

Welcome to heuristics!

● Provide a "good enough" solution to a problem when an
actual solution is impractical or impossible

Unit 6 Lesson 4 - Activity

Do This:
● Navigate to Level 1 on Code Studio
● Try to find the "best" path to visit all

nodes.
● Write down a plan or heuristic for

choosing a good path.
○ Note: your heuristic may not

always find the best path, but it
should be close enough

AP CSP
Journal

Unit 6 Lesson 4 - Activity

Do This:
● Navigate to Level 2 on Code Studio
● Test your heuristic on three different

levels.
● Write down the distance for the path

your heuristic finds.
● Try to find the best version not using

the heuristic (brute force). Can you find
a better path? Is your heuristic on
average pretty good? Should you
update your heuristic?

AP CSPJournal

Distance
(Heuristic)

Distance
(Brute Force)

1225 1215

Unit 6 Lesson 4 - Activity

Prompt:

● How did you create your heuristic?

● Did you change your heuristic after
testing it out?

Unit 6 Lesson 4 - Activity

Share Out:

Explain your heuristic.

As a class, which do we think is best?

Unit 6 Lesson 4 - Activity

Sample Heuristic:

At each node, travel to
the next closest node

Is this "good enough"? 1

2
3

4

5

6

7

8

9

10

11

12

Unit 6 Lesson 4 - Activity

Takeaways:

The Traveling Salesman Problem is an optimization
problem. We are attempting to find the best path.

It is also unreasonable because there is not an algorithm
that can solve the problem in a reasonable amount of time.

We need to use a heuristic to come up with a solution that
is "good enough" for most instances of the problem.

Unit 6 Lesson 4 - Activity

Problems

Any task that may (or may not) be solved with an algorithm.
Sorting a list is a problem. Sorting the list (2, 3, 1, 7) is an instance of that problem.

Decision Problems

“Is there a path?”

Optimization Problems

“What’s the shortest path”?

Undecidable Problems

“Will this code work?”

Unit 6 Lesson 4 - Activity

http://www.youtube.com/watch?v=VyHbd6sx5Po

Unit 6 Lesson 4 - Activity

Takeaways:

There are some problems we’ve proven that no computer
will ever be able to solve. The Halting Problem is a very
famous example and in general we call these problems

undecidable.

Unit 6 Lesson 4 - Wrap Up

Prompt:

Why is a heuristic acceptable when it
doesn't always produce the "best"

result?

Heuristic: provides a "good enough" solution to a
problem when an actual solution is impractical or
impossible

Undecidable Problem: a problem for which no algorithm
can be constructed that is always capable of providing a
correct yes-or-no answer

Unit 6 Lesson 4 - Wrap Up

Unit 6 - Lesson 5
Distributed Algorithms

Prompt:
Brainstorm a task that you can

complete faster if you get other people
to help.

What’s the most number of people
you’d want to help you and why?

Unit 6 Lesson 5 - Warm Up

Parallel Algorithms and Speedup
Groups: Get into groups of 3 or 4

Each group should have a deck of cards

Unit 6 Lesson 5 - Activity

Challenge One - One Person Sort

Shuffle the cards
Put them in a neat stack, face down
As quickly as you can, get the cards sorted
so all the red cards are at the bottom and all
the black cards are at the top.
Time stops when you have the cards sorted
and back in a neat stack.

Record the best time in your group

Unit 6 Lesson 5 - Activity

http://www.youtube.com/watch?v=QnD9BiY0YUw

Challenge Two - Two Person Sort

Shuffle the cards
Put them in a neat stack, face down
As quickly as you can, get the cards sorted
so all the red cards are at the bottom and all
the black cards are at the top.
Time stops when you have the cards sorted
and back in a neat stack.

This time two people can sort the cards.
Record the best time in your group

Unit 6 Lesson 5 - Activity

http://www.youtube.com/watch?v=QnD9BiY0YUw

Challenge Three - Full Group Sort

Shuffle the cards
Put them in a neat stack, face down
As quickly as you can, get the cards sorted
so all the red cards are at the bottom and all
the black cards are at the top.
Time stops when you have the cards sorted
and back in a neat stack.

This time your entire group (three or four
people) can sort the cards.
Record the best time in your group

Unit 6 Lesson 5 - Activity

http://www.youtube.com/watch?v=QnD9BiY0YUw

Sequential
Steps are performed in order,
one at a time.

Unit 6 Lesson 5 - Activity

Parallel
Some steps are performed at
the same time.

Parallel

Sequential

Prompt
What portions of your algorithms for
Challenges 2 and 3 were parallel?

What makes things complicated or
slows you down during parallel

portions of your algorithm?

Unit 6 Lesson 5 - Activity

Speedup
Sequential time divided by parallel time

Unit 6 Lesson 5 - Activity

60 seconds 40 seconds

60 seconds / 40 seconds = 1.5
The speedup of this parallel solution is 1.5

Prompt: What was your group’s
speedup in Challenge 2?

What about in Challenge 3?

Are you surprised?

Unit 6 Lesson 5 - Activity

It’s not just you! Speed-up is
never equal to the number
of processors.

Some portions of your
algorithm can’t be made
parallel. Each additional
processor helps a little less.
Eventually the speedup
reaches a limit.

Prompt
As you watch this video write down

● Why is the type of computing
presented “distributed”?

● Why is distributed computing used to
solve the problem?

Unit 6 Lesson 5 - Activity

Unit 6 Lesson 5 - Activity

http://www.youtube.com/watch?v=RGGzMQ2oFrA

Prompt
As you watch this video write down

● Why is the type of computing
presented “distributed”?

● Why is distributed computing used to
solve the problem?

Unit 6 Lesson 5 - Activity

Sequential Computing: programs run in order, one
command at a time.

Parallel Computing: programs are broken into small
pieces, some of which are run simultaneously

Distributed Computing: programs are run by multiple
devices

Speedup: the time used to complete a task sequentially
divided by the time to complete a task in parallel

Unit 6 Lesson 5 - Wrap Up

Unit 6 Lesson 5 - Wrap Up

Prompt:

Based on today’s activities, what are
the pros and cons of parallel and

distributed computing?

Unit 6 - Lesson 6
Assessment Day

Unit Assessment
Unit 3 Lesson 10 - Activity

