## **Εφαρμογές Arduino** Σεμινάριο Ηλεκτρονικού Τομέα



## Πλακέτα Arduino

- Το 2005 οι Massimo Banzi και David Cueartielles στο Ivrea
   Δημιουργούν την υπολογιστική πλατφόρμα Arduino.
- Το Arduino είναι βασισμένο σε μια απλή μητρική πλακέτα ανοικτού κώδικα, με ενσωματωμένο μικροελεγκτή και εισόδους-εξόδους, και η οποία μπορεί να προγραμματιστεί με τη γλώσσα wiring







#### Ακροδέκτες ΑΤΜega328P

| Arduino function    | _                           | -                         | Arduino function     |
|---------------------|-----------------------------|---------------------------|----------------------|
| reset               | (PCINT14/RESET) PC6         | 28 PC5 (ADC5/SCL/PCINT13) | analog input 5       |
| digital pin 0 (RX)  | (PCINT16/RXD) PD0 2         | 27 PC4 (ADC4/SDA/PCINT12) | analog input 4       |
| digital pin 1 (TX)  | (PCINT17/TXD) PD1 3         | 26 PC3 (ADC3/PCINT11)     | analog input 3       |
| digital pin 2       | (PCINT18/INT0) PD2 4        | 25 PC2 (ADC2/PCINT10)     | analog input 2       |
| digital pin 3 (PWM) | (PCINT19/OC2B/INT1) PD3     | 24 PC1 (ADC1/PCINT9)      | analog input 1       |
| digital pin 4       | (PCINT20/XCK/T0) PD4 6      | 23 PC0 (ADC0/PCINT8)      | analog input 0       |
| VCC                 | VCC 7                       | 22 GND                    | GND                  |
| GND                 | GND 🗆 8                     | 21 AREF                   | analog reference     |
| crystal             | (PCINT6/XTAL1/TOSC1) PB6 9  | 20 AVCC                   | VCC                  |
| crystal             | (PCINT7/XTAL2/TOSC2) PB7 10 | 19 PB5 (SCK/PCINT5)       | digital pin 13       |
| digital pin 5 (PWM) | (PCINT21/OC0B/T1) PD5 11    | 18 PB4 (MISO/PCINT4)      | digital pin 12       |
| digital pin 6 (PWM) | (PCINT22/OC0A/AIN0) PD6 12  | 17 PB3 (MOSI/OC2A/PCINT3) | digital pin 11(PWM)  |
| digital pin 7       | (PCINT23/AIN1) PD7 13       | 16 PB2 (SS/OC1B/PCINT2)   | digital pin 10 (PWM) |
| digital pin 8       | (PCINT0/CLKO/ICP1) PB0 14   | 15 PB1 (OC1A/PCINT1)      | digital pin 9 (PWM)  |

#### **ΜΝΗΜΕΣ ΑΤΜΕGA328**

Flash (32K) (15-bit addresses) τοποθετείται κάθε φορά το πρόγραμμα που πρόκειται να εκτελεστεί καθώς και ο φορτωτής εκκίνησης που διευκολύνει την διαδικασία του προγραμματισμού της πλατφόρμας.(μη πτητική)

SRAM (2K) χρησιμοποιείται για την προσωρινή αποθήκευση των στατικών και των μεταβλητών δεδομένων του προγράμματος που εκτελείται. Χάνει τα δεδομένα της όταν η παροχή ρεύματος στο Arduino σταματήσει ή αν γίνει reset. (πτητική)

EEPROM (1K)αποθηκεύονται οι τιμές των μεταβλητών όταν η πλατφόρμα σβήσει(OFF). Χρησιμοποιείται για την αποθήκευση ρυθμίσεων και άλλων παραμέτρων ανάμεσα στα Reset του Arduino. (μη πτητική)

#### Arduino Shields

 Τα shield είναι ολοκληρωμένες πλακέτες που είναι σχεδιασμένες ώστε να κουμπώνουν πάνω στο Arduino προεκτείνοντας την λειτουργικότητά του.





#### Arduino Shields

#### PCB

#### **Built Shield**

#### **Inserted Shield**



#### **Arduino Shields**



#### MP3 Trigger











#### Arduino & Arduino συμβατές πλακέτες



#### Ας αρχίσουμε να χρησιμοποιούμε λοιπόν τον δικό μας Arduino!!!



#### Arduino

#### Ολοκληρωμένο Περιβάλλον Ανάπτυξης (IDE)

| 0                         | BareMinimum   Arduino 1.0.3   | - 🗆 🗙                                     |                                                        |  |  |  |
|---------------------------|-------------------------------|-------------------------------------------|--------------------------------------------------------|--|--|--|
| File Edit Sketch Tools    | File Edit Sketch Tools Help   |                                           |                                                        |  |  |  |
|                           |                               | se an | δυο ειδικές συναρτήσεις                                |  |  |  |
| BareMinimum               |                               | <b>•</b>                                  | που είναι μέρος του κάθε                               |  |  |  |
| <pre>void setup() {</pre> | n code here to run once.      | ^                                         | που είναι μερός του κάθε                               |  |  |  |
| ,, pac your seca          | , code mere, co ran once.     |                                           | sketch του Arduino                                     |  |  |  |
| }                         |                               |                                           | $(\langle \delta n \rangle \langle \sigma n \rangle )$ |  |  |  |
| <pre>void loop() {</pre>  |                               |                                           | //ΟΙΜΟΟΙ μειαρλητων                                    |  |  |  |
| // put your main          | code here, to run repeatediy: |                                           | void setup ()                                          |  |  |  |
| }                         |                               |                                           | vora beeap ()                                          |  |  |  |
|                           |                               |                                           | {                                                      |  |  |  |
|                           |                               |                                           | //αρχικοποιήσεις                                       |  |  |  |
|                           |                               |                                           | }                                                      |  |  |  |
|                           |                               |                                           | traid loop ()                                          |  |  |  |
|                           |                               | ¥                                         | vola 100p ()                                           |  |  |  |
| <                         |                               | >                                         | {                                                      |  |  |  |
|                           |                               |                                           | //Κώδικας                                              |  |  |  |
| error                     | a status messa                | ges                                       |                                                        |  |  |  |
| 1                         | Lib/Pad Arduino w/ ATmee      | 14328 on COM28                            | }                                                      |  |  |  |
|                           |                               |                                           |                                                        |  |  |  |

## Settings: Tools $\rightarrow$ Serial Port

| <b></b>          | sketch_may01a   Arduino 1.0.3 – 🗖                             |  |  |  |
|------------------|---------------------------------------------------------------|--|--|--|
| File Edit Sketch | Tools Help                                                    |  |  |  |
| sketch_may01     | Auto Format Ctrl+T<br>Archive Sketch<br>Fix Encoding & Reload |  |  |  |
|                  | Board                                                         |  |  |  |
|                  | Serial Port V COM3                                            |  |  |  |
|                  | Programmer  Burn Bootloader                                   |  |  |  |

•Ο υπολογιστής επικοινωνεί με το Arduino microcontroller με την Serial port  $\rightarrow$  COM3 μέσω ενός υποδοχέα USB.

•Ελέγξτε για να σιγουρευτείτε ότι έχουν εγκατασταθεί οι drivers.

Στο δικό σας Arduino η θύρα COM μπορεί φυσικά να είναι διαφορετική

## Επιλογή: Tools → Board

| 💿<br>File Edit Sketch | sketch_jun17a   Arc<br>Tools Help                                            | duino 1.0.5            | ATtiny85 (external 20 MHz clock)<br>ATtiny44 (internal 1 MHz clock)<br>ATtiny44 (internal 8 MHz clock)                                     |
|-----------------------|------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| sketch_jun17a         | Auto Format C<br>Archive Sketch<br>Fix Encoding & Reload<br>Serial Monitor C | Ctrl+T<br>Ctrl+Shift+M | ATtiny44 (external 20 MHz clock)<br>ATtiny84 (internal 1 MHz clock)<br>ATtiny84 (internal 8 MHz clock)<br>ATtiny84 (external 20 MHz clock) |
|                       | ArduBlock                                                                    | •                      | Arduino Uno<br>Arduino Duemilanove w/ ATmega328                                                                                            |
|                       | Board<br>Serial Port                                                         | Þ                      | Arduino Diecimila or Duemilanove w/ ATmega168<br>Arduino Nano w/ ATmega328                                                                 |
|                       | Programmer<br>Burn Bootloader                                                | Þ                      | Arduino Nano w/ ATmega168<br>Arduino Mega 2560 or Mega ADK                                                                                 |
|                       |                                                                              |                        | Arduino Mega (ATmega1280)<br>Arduino Leonardo<br>Arduino Esplora                                                                           |

•Επιλέγουμε την πλακέτα με το μενού :Tools -> Board -> Arduino Uno

## **ENNOIE EHMANTIKES** 6



## Ψηφιακές και Αναλογικές Ι/Ο

#### Ψηφιακά pins:

- Pins 0 7: PORT D [0:7]
- Pins 8 13: PORT B [0:5]



- Pins 14 19: PORT C [0:5] (Arduino αναλογικά pins 0 5)
- Τα pins 0 και 1 είναι RX και TX για serial επικονωνία
- Στο ψηφιακό pin 13 είναι συνδεδεμένο ένα LED στην βασική πλακέτα

## Ψηφιακές και Αναλογικές Ι/Ο

#### Ψηφιακά Pin I/Ο – εντολές, λειτουργίες

- pinMode(*pin*, *mode*)
- Θέτει το pin σε κατάσταση INPUT ή OUTPUT
- (ορίζει μια επαφή ως είσοδο ή έξοδο)
- digitalWrite(pin, value)
- Θέτει το pin value σε LOW ή HIGH (0 ή 1)
- (γράφει σε μία ψηφιακή επαφή εξόδου)
- int value = digitalRead(pin)
- Επιστρέφει την τιμή του pin value (0 ή 1)

#### Arduino Αναλογικές είσοδοι/έξοδοι ( Ι/Ο)



- Αναλογικές είσοδοι pins: 0 5
- Αναλογικές έξοδοι pins: 3, 5, 6, 9, 10, 11 (ψηφιακά pins)

#### Arduino Αναλογικές είσοδοι/έξοδοι ( Ι/Ο)

- Αναλογικές είσοδοι εντολές, λειτουργίες
- int val = analogRead(pin)
- Μετατρέπει την τάση 0 5V σε έναν 10-bit αριθμό (0 – 1023)
- Analog output
- analogWrite(*pin*, *value*)
- value είναι 0 255
- Δημιουργεί PWM έξοδο στα ψηφιακά pin (3, 5, 6, 9, 10, 11)



#### Let's get to coding...

#### •Project #1 – Blink

-"Hello World" of Physical Computing

#### Psuedo-code – how should this work?



## Σχόλια, Σχόλια, Σχόλια

- Τα σχόλια είναι για σας τον προγραμματιστή και τους φίλους του...ή οποιονδήποτε θελήσει να διαβάσει τον κώδικα.
- // αυτό είναι για σχόλια μιας γραμμής
- // Είναι καλό να βάζουμε μια περιγραφή πρίν από κάποιο `κόλπο'
- /\* αυτό είναι για σχόλια πολλών γραμμών
- Σαν και αυτό...
- ή αυτό....
- \*/



#### Τρεις εντολές που πρέπει να γνωρίζουμε...

- **pinMode**(pin, INPUT/OUTPUT);
- <u>πχ</u>: **pinMode**(13, OUTPUT);
- **digitalWrite**(pin, HIGH/LOW);
- <u> $\pi\chi$ </u>: **digitalWrite**(13, HIGH);
- delay(time\_ms);
- <u>πχ</u>: delay(2500); // καθυστέρηση 2.5 sec.
- // NOTE: -> commands are CASE-sensitive (Κεφαλαία μικρά έχουν σημασία)

#### Project #1: Καλωδίωση



Ένα χρήσιμο προγραμμα για τις καλωδιώσεις των κατασκευών μας είναι το Fritzing

Η εικόνα φτιάχτηκε με το πρόγραμμα Fritzing

#### Έννοιες προγραμματισμού : Μεταβλητές



#### "Οδηγώντας" κινητήρες ή άλλα φορτία με μεγάλο ρεύμα

NPN Transistor (Common Emitter "Amplifier" Circuit)



## Project #2 – Ψηφιακή είσοδος

- In Arduino, open up:
- File  $\rightarrow$  Examples  $\rightarrow$  02.Digital  $\rightarrow$  Button

#### Ψηφιακοί αισθητήρες(διακόπτες) αντίστασηPull-up <u>(κύκλωμα)</u>



#### Ψηφιακοί αισθητήρες(διακόπτες) προσθέσαμε ενδεικτικό LED στο Pin 13



#### Είναι σαν το πρώτο μας κύκλωμα!



## Ψηφιακή είσοδος

- Συνδέστε την ψηφιακή είσοδο του Arduino με τα Pins # 0 13 (Although pins # 0 & 1 are also used for programming)
- Χρειαζόμαστε την εντολή pinMode :
- pinMode (pinNumber, INPUT);
- Make sure to use ALL CAPS for **INPUT**
- Για να διαβάσουμε την ψηφιακή είσοδο:
- int buttonState = digitalRead
  (pinNumber);
- Digital Input values are only **HIGH** (On) or **LOW** (Off)

We set it equal to the function digitalRead(pushButton)

We declare a variable as an integer.

The function digitalRead() will return the value 1 or 0, depending on whether the button is being pressed or not being pressed.

#### int buttonState = digitalRead(pushButton);

We name it buttonState

Recall that the pushButton variable stores the number 2

The value 1 or 0 will be saved in the variable buttonState.



#### Προγραμματίζοντας: Δομές ελέγχου ροής if()



## Τελεστές σύγκρισης

| <boolean></boolean> |   | >  | Description |   |                       |
|---------------------|---|----|-------------|---|-----------------------|
| (                   | ) | == | (           | ) | is equal?             |
| (                   | ) | != | (           | ) | is not equal?         |
| (                   | ) | >  | (           | ) | greater than          |
| (                   | ) | >= | (           | ) | greater than or equal |
| (                   | ) | <  | (           | ) | less than             |
| (                   | ) | <= | (           | ) | less than or equal    |

## analogRead()

- O Arduino χρησιμοποιεί 10-bit A/D Converter:
- Αυτό σημαίνει τιμές εισόδου από 0 έως 1023
  - Για 0 V → δίνει 0
  - Για 5 V → δίνει 1023

πχ:

• int sensorValue = analogRead(A0);

## Σειριακή επικοινωνία

Όταν έχουμε ανταλλαγή δεδομένων μεταξύ δύο συσκευών.



#### Serial Monitor & analogRead()



#### Serial Monitor & analogRead()

| <u>©</u>                       | sketch_apr02a   Arduino 1.0.3        | - 🗆 🗙               |                 |
|--------------------------------|--------------------------------------|---------------------|-----------------|
| File Edit Sketch Tools         | Help                                 |                     | Ανοίγει το      |
|                                |                                      |                     | παράθυρο        |
| sketch_apr02a§                 |                                      |                     | Serial Terminal |
| // analogRead() & S            | erial.print()                        | ^                   |                 |
|                                |                                      |                     |                 |
| 11                             |                                      |                     |                 |
| <pre>int sensorValue = 0</pre> | ;                                    |                     |                 |
| <pre>int sensorPin = A0;</pre> |                                      |                     |                 |
| void setup()                   |                                      |                     |                 |
| {                              |                                      |                     |                 |
| Serial.begin(9600              | );                                   |                     |                 |
| pinMode(A0, INPUT              | );                                   |                     |                 |
| }                              |                                      |                     |                 |
| <pre>void loop()</pre>         |                                      |                     |                 |
| {                              |                                      |                     |                 |
| sensorValue = ana.             | logRead(AO);                         |                     |                 |
| delaw(100): // m               | nsorvalue);<br>aits by about 0.1 sec |                     |                 |
| }                              | ares 51 about 0.1 Sec                |                     |                 |
| ,                              | 1ο ΕΠΑΛ Περάματο                     | ς - 7ο ΕΚ Πειραιά 🎽 |                 |

#### σειριακής επικοινωνίας συνέχεια Στέλνοντας ένα μήνυμα

# void loop ( ) { Serial.print("Hands on ") ; Serial.print("Learning ") ; Serial.println("is Fun!!!") ;



#### Σειριακή επικοινωνία: Serial Debugging

```
void loop()
   int xVar = 10;
   Serial.print ( "Variable xVar is " )
   Serial.println ( xVar ) ;
                                                      <u>4</u>>
                                                                        COM24
                                                                                           Send
                                                      Variable xVar is 10
                                                      ✓ Autoscroll
                                                                               No line ending 🔍 🗸
                                                                                        9600 baud
                              1ο ΕΠΑΛ Περάματος - 7ο ΕΚ Πειραιά
```

#### Σειριακή επικοινωνία : Serial Troubleshooting







#### Virtual Electrical Prototyping Project started in 2007 by the Interaction Design Lab at the University of Applied Science Potsdam, Germany Open Source Prototypes: Document, Share, Teach, Manufacture

## Εξομοίωση για τον Arduino

#### http://virtronics.com.au/Simulator-for-Arduino.html



 Control an LED over the Internet using the Arduino Ethernet Shield



#### RASPBERRY PI LINUX Single Board Computer

 Αναβόσβημα Led χρήση εντολών από την βιβλιοθήκη Wiring Pi (Arduino like Programming)



## Ανάπτυξη εφαρμογής με έλεγχο από PS2 Keyboard και απεικόνιση σε VGA Monitor με Gameduino



Ανάπτυξη εφαρμογής με χρήση του RTOS (Λειτουργικού Συστήματος Πραγματικού Χρόνου) FreeRTOS



Σύστημα μετρήσεων με 5 διεργασίες και FreeRTOS

•Luminosity and Temperature measurements - Task A & Task B

•Optical switch - Task C

•Sending information's to the personal computer - Task D

•Receiving information from the personal computer - Task E



## Το μέλλον





AVR Arduino microcontroller ATmega32u4 Operating Digital I/O Pins 20

**PWM Channels 7** 

**Analog Input Channels 12** 

Flash Memory 32 KB (of which 4 KB used by bootloader)

SRAM 2.5 KB

**EEPROM 1 KB** 

**Clock Speed 16 MHz** 



Linux microprocessorProcessor Atheros AR9331

Architecture MIPS @400MHz

**Operating Voltage 3.3V** 

Ethernet IEEE 802.3 10/100Mbit/s

WiFi IEEE 802.11b/g/n

MUSB Type-A 2.0 Host/Device

Card Reader Micro-SD only

RAM 64 MB DDR2

Flash Memory 16 MB