

12 Large Numbers

Get ready!

1 Before you read the passage, talk about these questions.

- 1 What is the benefit of scientific notation?
- 2 What happens if a quantity has too few significant figures?

To: All Employees
From: s.green@pendlebergengineering.net
Subject: Number Conventions

Hello Everyone,
Some employees are not using our number conventions. Please review these guidelines for ensuring consistency and accuracy.

- Double-check your **exponents**. Someone recently recorded a quantity as **cubed** instead of **squared**. This caused serious errors in the results of the project.
- Very large and small quantities are easy to misread in decimal form. Express them in **scientific notation**. Raising a figure **to the nth power** is more reliable.
- Use appropriate **significant figures**. This prevents problems from **rounding errors**. Most of our formulas require precision to the **thousandths**. Rounding to **tenths** or **hundredths** instead produces inaccurate results. Use **trailing zeros** to indicate your number of significant figures.

Thanks for your cooperation.
Stanley Green
Pendleberg Engineering, Inc.

Reading

2 Read the email. Then, choose the correct answers.

- 1 What is the purpose of the email?
 - A to outline the special number conventions for a new project
 - B to remind employees about the importance of number conventions
 - C to describe a training course on number conventions
 - D to recommend changes to company policies on number conventions
- 2 What is NOT a guideline in the email?
 - A Use decimal form for large quantities.
 - B Express small quantities in scientific notation.
 - C Round to the thousandths for most formulas.
 - D Show significant figures with trailing zeros.
- 3 What was the problem with a quantity on a recent project?
 - A It was not expressed in scientific notation.
 - B It was raised to the wrong exponent.
 - C It had too few significant figures.
 - D It did not show trailing zeros.

Vocabulary

3 Match the words or phrases (1-6) with the definitions (A-F).

1	— squared	4	— to the nth power
2	— hundredth	5	— significant figure
3	— thousandth	6	— scientific notation

A a digit that identifies a quantity's level of precision
B multiplied by itself a particular number of times
C a quantity that is expressed in the third place after a decimal point
D having an exponent of two
E a way of expressing very large or very small quantities
F a quantity that is expressed in the second place after a decimal point

4 Read the sentences and choose the correct words or phrases.

- 1 The quantity is rounded to the **tenths/thousandths**, so it only has one digit after the decimal point.
- 2 If N is **squared/cubed**, it equals $N \times N \times N$.
- 3 Changing 10.99 to 11 causes a **rounding error/scientific notation**.
- 4 A(n) **trailing zero/exponent** does not have any numerical value.
- 5 If the **hundredth/exponent** is six, then the quantity is multiplied by itself six times.

5 Listen and read the email again. What happens if the wrong exponent is used in an equation?

Listening

6 Listen to a conversation between a mechanical engineer and an assistant. Mark the following statements as true (T) or false (F).

- 1 The result of the man's calculation was too high.
- 2 The formula was missing an exponent.
- 3 The man's error caused a system failure.

7 Listen again and complete the conversation.

Engineer: Hey, Paul? Something's 1 _____ in this equation.

Assistant: Really? I checked it twice.

Engineer: The energy of this system should be under 2 _____. Your result came to nearly ten thousand!

Assistant: Wow, that's 3 _____. I wonder what I did wrong.

Engineer: Let's take a look at your formula. Oh, I see what happened.

Assistant: What is it?

Engineer: The meters are 4 _____ instead of squared.

Assistant: I see. So I used the 5 _____.

Engineer: Exactly. You have to be 6 _____ about this. That kind of error could be disastrous.

Speaking

8 With a partner, act out the roles below based on Task 7. Then, switch roles.

USE LANGUAGE SUCH AS:

I wonder what I ...
You ... instead of ...
You have to be ...

Student A: You are an engineer.

Talk to Student B about:

- an error in an equation
- how he or she caused the error
- how the error affected the result

Student B: You are an assistant.

Talk to Student A about an error in an equation.

Writing

9 Use the email and the conversation from Task 8 to fill out the email from an engineer to an assistant.

Hi Paul,

Your report contains an error. Please correct the error and submit the report again.

Error: _____

Result of the error: _____

Corrected quantity: _____

Lenore