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1. Να αποδειχθεί ότι δεν υπάρχει θετικός ακέραιος n έτσι ώστε οι αριθμοί n+3 και n2+3n+3
να είναι ταυτόχρονα τέλειοι κύβοι.

2. Να αποδειχθεί ότι για κάθε μη αρνητικό ακέραιο n ο αριθμός

A = 55
n+1

+ 55
n

+ 1

δεν είναι πρώτος.

3. Να αποδειχθεί ότι για οποιουσδήποτε θετικούς ακεραίους a, b ο αριθμός

N = (36a+ b)(36b+ a)

δεν μπορεί να είναι δύναμη του 2.

4. Να λυθεί στους θετικούς ακεραίους η εξίσωση

xx+y = yy−x.

5. Ορίζουμε τους αριθμούς

Tn = 22
n

+ 1,

με n ∈ N∗. Να αποδειχθεί ότι αν m 6= n τότε οι αριθμοί Tm, Tn είναι σχετικά πρώτοι.

6. Να βρεθούν όλα τα ζεύγη ακεραίων (x, y) που είναι τέτοια, ώστε

x6 + 3x3 + 1 = y4.

7. Να βρεθούν όλα τα ζεύγη μη-μηδενικών ακεραίων (x, y) που είναι τέτοια, ώστε

(x2 + y)(x+ y2) = (x− y)3.

8. Να προσδιορισθούν οι θετικοί ακέραιοι n για τους οποίους ο αριθμός

n4 + 4n

είναι πρώτος.

9. Να βρεθούν όλα τα ζεύγη ακεραίων (x, y) που είναι τέτοια, ώστε

x3 + x2y + xy2 + y3 = 8(x2 + xy + y2 + 1).

10. Αν οι θετικοί ακέραιοι x, y ικανοποιούν την σχέση

2x2 + x = 3y2 + y,

τότε να αποδειχθεί ότι οι αριθμοί x− y και 2x+ 2y + 1 είναι τέλεια τετράγωνα.

Σιλουανός Μπραζιτίκος
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Λύσεις

1. Αν υποθέσουμε ότι και οι δύο αριθμοί είναι τέλειοι κύβοι, τότε τέλειος κύβος είναι και το

γινόμενό τους. Το γινόμενό τους ισούται με

K = (n+ 3)(n2 + 3n+ 3) = n3 + 6n2 + 12n+ 9.

Παρατηρούμε όμως ότι

(n+ 2)3 < K < (n+ 3)3,

για κάθε θετικό ακέραιο n. ΄Επεται ότι ο K δεν μπορεί να είναι τέλειος κύβος. �

2. Θέτουμε 55
n

= x. Τότε

A = x5 + x+ 1 = x5 − x2 + x2 + x+ 1 = (x2 + x+ 1)(x3 − x2 + 1).

Εύκολα βλέπουμε ότι καθεμιά παρένθεση είναι μεγαλύτερη του 1 για 55
n

= x επομένως ο A δεν
είναι πρώτος. �

3. ΄Εστω ότι

(1) (36a+ b)(36b+ a) = 2k,

για κάποιο ακέραιο k > 1. Υποθέτουμε ότι d = (a, b) και γράφουμε a = dx, b = dy, με (x, y) = 1
Τότε η (1) δίνει ότι

d2(36x+ y)(36y + x) = 2k.

΄Επεται ότι ο d είναι δύναμη του 2. Επομένως μένει να λύσουμε την εξίσωση

(2) (36x+ y)(36y + x) = 2s,

για κάποιο s > 0. Παρατηρούμε ότι ο s δεν μπορεί να είναι μηδέν. Επιπλέον (36x+y, 36y+x)|2s
άρα είναι κάποια δύναμη του δύο ή είναι ίσος με 1. Αν είναι κάποια δύναμη του 2, τότε 2|x και
2|y, που είναι άτοπο. Επομένως ο (36x + y, 36y + x) = 1. Τότε η (2) συνεπάγεται ότι είτε ο
36x+ y είτε ο 36y + x είναι ίσος με 1. Αυτό είναι άτοπο και το ζητούμενο έπεται. �

4. Αν y < x τότε προφανώς δεν έχουμε λύσεις. Αν y = x, τότε έχουμε τα ζεύγη λύσεων
(x, y) = (1, 1) και (x, y) = (−1,−1).
Υποθέτουμε τώρα ότι y > x. Παρατηρούμε αρχικά ότι

p|x⇔ p|y.

΄Επεται ότι

x = pα1
1 . . . pαk

k και y = pβ1

1 . . . pβk

k .

Αντικαθιστώντας στην εξίσωση και χρησιμοποιώντας τη μοναδικότητα της παρογοντοποίησης

στο Z, συμπεραίνουμε ότι
αi(x+ y) = βi(y − x),

για κάθε i = 1, . . . , k. ΄Επεται ότι αi < βi και επομένως x|y. Γράφουμε y = sx. Αντικαθιστώντας
στην αρχική εξίσωση παίρνουμε και ύστερα από τις απλοποιήσεις παίρνουμε

x2 = ss−1.
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Από την τελευταία συμπεραίνουμε ότι είτε s = t2, είτε s−1 = 2z. Στην πρώτη περίπτωση έχουμε
την οικογένεια λύσεων

(x, y) =
(
tt

2−1, tt
2+1
)
, t ∈ N∗.

Στη δεύτερη περίπτωση έχουμε την οικογένεια λύσεων

(x, y) =
(
(2z + 1)z, (2z + 1)z+1

)
, s ∈ N.

�

5. Παρατηρούμε ότι

Tn − 2 = 22
n

− 1 =
(

22
n−1

− 1
)(

22
n−1

+ 1
)

=
(

22
n−2

− 1
)(

22
n−2

+ 1
)(

22
n−1

+ 1
)

. . .

= Tn−1Tn−2 . . . T1.

΄Επεται ότι αν κάποιος αριθμός d διαιρεί τον Tm και τον Tn τότε διαιρεί και το 2. Τότε πρέπει
d = 1 γιατί οι Tn είναι περιττοί, που είναι και το ζητούμενο. �

6. Συμπληρώνοντας το τετράγωνο, γράφουμε την εξίσωση στη μόρφη(
x3 +

3

2

)2

− 5

4
= y4 ⇒

(2x3 + 3)2 − 4y4 = 5⇒
(2x3 + 3− 2y2)(2x3 + 3 + 2y2) = 5.

Προκύπτουν έτσι τέσσερα συστήματα{
2x3 − 2y2 + 3 = 1,

2x3 + 2y2 + 3 = 5,

{
2x3 − 2y2 + 3 = −1,

2x3 + 2y2 + 3 = −5,{
2x3 − 2y2 + 3 = 5,

2x3 + 2y2 + 3 = 1,

{
2x3 − 2y2 + 3 = −5,

2x3 + 2y2 + 3 = −1.

Τελικά τα μοναδικά ζεύγη λύσεων είναι τα (0, 1), (0,−1). �

7. Η εξίσωση είναι ισοδύναμη με την ακόλουθη

2y2 + (x2 − 3x)y + 3x2 + x = 0.

Η παραπάνω έχει ακέραιες λύσεις αν και μόνο αν η διακρίνουσά της είναι τέλειο τέλειο τετράγωνο.

Δηλαδή αν

∆ = x(x+ 1)2(x− 8) = z2,

για κάποιο μη αρνητικό ακέραιο z. ΄Επεται ότι για κάποιο μη αρνητικό ακέραιο w ισχύει

x(x− 8) = w2 ⇒ (x− 4)2 − w2 = 16⇒ (x− w − 4)(x+ w − 4) = 16.
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Διακρίνοντας τις περιπτώσεις βρίσκουμε ότι τα ζεύγη λύσεων είναι

(x, y) ∈ {(−1,−1), (8,−10), (9,−6), (9,−21)}.

�

8. Αν n = 1, τότε ο αριθμός είναι πρώτος. Αν n είναι άρτιος τότε ο αριθμός είναι πολλαπλάσιο
του 2 επομένως πρέπει n = 2k + 1. Τότε γράφουμε

n4 + 4n = n4 + 42k+1 = n4 + 4 · 24k

= n4 + 4m4

= n4 + 4m4 + (2mn)2 − (2mn)2

= (n2 + 2m2 − 2mn)(n2 + 2m2 + 2mn),

όπου m = 2k. Για n > 1 εύκολα βλέπουμε ότι κάθε παρένθεση είναι μεγαλύτερη του 1, άρα ο
αριθμός δεν είναι πρώτος. Συνεπώς μοναδική λύση είναι η n = 1. �

9. Επειδή η εξίσωση είναι συμμετρική ως προς x, y θέτουμε x+y = s και xy = p. Τότε αυτή
παίρνει τη μορφή

s3 − 2sp = 8s2 − 8p+ 8.

Από την τελευταία έπεται ότι ο s είναι άρτιος και γράφουμε s = 2t. Τότε παίρνουμε

2t3 − tp = 8t2 − 2p+ 2

και λύνονοντας ως προς p παίρνουμε

p =
2t3 − 8t2 − 2

t− 2
= 2t2 − 4t− 8− 18

t− 2
.

Επομένως αφού p είναι ακέραιος, θα πρέπει t−2|18. Εξετάζοντας τις 12 περιπτώσεις που προκύπ-
τουν, έχουμε τελικά ότι τα μόνα ζεύγη λύσεων είναι (x, y) ∈ {(8, 2), (2, 8)}. �

10. Γράφουμε τη δοθείσα στη μορφή

2x2 − 2y2 + x− y = y2 ⇒
(x− y)(2x+ 2y + 1) = y2.(3)

Θα βρούμε το μέγιστο κοινό διαιρέτη των x − y και 2x + 2y + 1. ΄Εστω ένας πρώτος p που
είναι κοινός διαιρέτης των x − y και 2x + 2y + 1. Τότε η (3) δίνει ότι p|y. Οπότε p|x αλλά
τότε πρέπει p|1. ΄Επεται ότι δύο αυτοί αριθμοί είναι πρώτοι μεταξύ τους και έτσι πρέπει να είναι
και οι δύο τέλεια τετράγωνα, που είναι και το ζητούμενο. Ενδιαφέρον παρουσιάζει το ερώτημα

να βρεθούν όλοι οι ακέραιοι x, y που ικανοποιούν την (3). Για να δοθεί όμως απάντηση στο
παραπάνω ερώτημα απαιτούνται εργαλεία ξεφεύγουν από τους σκοπούς της παρουσίασης. �
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∆ιαιρετοτητα και Ισοτιµιες

ΠΡΟΛΟΓΟΣ

Το παρόν άρθρο είναι µία συγκέντρωση κάποιων ϐασικών προτάσεων και παρα-
δειγµάτων από τη ϑεωρία της ∆ιαιρετότητας και των (γραµµικών κυρίως) ισοτιµιών.
Σε καµία περίπτωση δεν επικαλείται ο συγγραφέας του άρθρου την πρωτοτυπία των
περιεχοµένων, τα οποία ϐρίσκονται στα ϐιβλία της ϐιβλιογραφίας που παρατίθεται
στο τέλος του παρόντος, στη συλλογή µαθηµατικών διαγωνισµών του γράφοντος και
σε αρκετά ϐιβλία στοιχειώδους Θεωρίας Αριθµών. Παρά ταύτα, καταβλήθηκε ιδιαί-
τερη προσπάθεια ώστε η παρουσίαση της ύλης να είναι διαβαθµισµένη και όλα τα
περιεχόµενα να περιέχουν ασκήσεις που ενδιαφέρουν µικρούς αλλά και µεγάλους
µαθητές µε ενδιαφέρον για τα µαθηµατικά και συγκεκριµένα τους Μαθηµατικούς
∆ιαγωνισµούς. Με µεγάλη χαρά ϑα δεχτώ στο email µου ags@math.uoc.gr, τις
υποδείξεις σας, καθώς επίσης και τα σχόλια - κριτικές σας. Μοναδικός υπεύθυνος
για τα γραφόµενα, είναι ο συγγραφέας που έκανε την επιλογή των προτάσεων και
των ασκήσεων από τα ϐιβλία της ϐιβλιογραφίας. Τελειώνοντας, ϑα ήθελα να ευ-
χαριστήσω τον Καθηγητή του Πανεπιστηµίου Κρήτης κο Μιχάλη Λάµπρου για την
πολύτιµη συµβολή του στις διορθώσεις του παρόντος.

Αλέξανδρος Γ. Συγκελάκης
Νοέµβριος 2012
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Εισαγωγή στη Θεωρία Αριθµών

ΣΥΜΒΟΛΙΣΜΟΙ

a|b : «Ο a διαιρεί τον b» δηλαδή υπάρχει k ∈ Z, τέτοιος ώστε b = k · a.
pk‖a : «Το pk είναι η µεγαλύτερη δύναµη του p που διαιρεί το a.» ∆ηλαδή το pk

διαιρεί ακριβώς το a (αρα pk|a ενώ pk+1 6 | a).
a 6 | b : «Ο a δεν διαιρεί τον b ».
min {a1, . . . , an} : Ο µικρότερος µεταξύ των αριθµών a1, . . . an.
max {a1, . . . , an} : Ο µεγαλύτερος µεταξύ των αριθµών a1, . . . an.
(a1, . . . , an) : Ο Μ.Κ.∆. των αριθµών a1, . . . an.
[a1, . . . , an] : Το Ε.Κ.Π. των αριθµών a1, . . . an.
n! : ∆ιαβάζεται «n παραγοντικό» και ορίζεται να είναι n! = 1 · 2 · · · · n n ≥ 2 και

0!=1, 1!=1.
a ≡ b (mod n) : «Ο a είναι ισότιµος µε τον b modulo n (ή κατά µέτρο n) » δηλαδή

n|(a− b).
ordn(a) : «Τάξη του a modn» µε (a, n) = 1, ονοµάζουµε τον ελάχιστο ακέ-

ϱαιο r για τον οποίο ισχύει ar ≡ 1 (mod n). Αποδεικνύεται (πολύ εύκολα) ότι
ordn(a)|φ(n).
Z : Το σύνολο των ακεραιών αριθµών {. . . ,−2,−1, 0, 1, 2, . . .}.
N : Το σύνολο των ϕυσικών αριθµών {0, 1, 2, 3 . . .}.
∃ : Ο υπαρξιακός ποσοδείκτης. ∆ιαβάζεται «Υπάρχει» (τουλάχιστον ένα).

|a| : «Απόλυτη τιµή του αριθµού a» δηλαδή |a| =
{
a, εαν a ≥ 0
a, εαν a < 0

Αλεξανδρος Γ. Συγκελακης 3



∆ιαιρετοτητα και Ισοτιµιες

1 ∆ιαιρετότητα

1.1 Ευκλείδεια ∆ιαίρεση

Είναι γνωστό από την ευκλείδεια διαίρεση ότι εαν έχουµε δύο ϕυσικούς αριθµούς
∆ (∆ιαιρετέος) και δ (διαιρέτης) µε δ 6= 0 τότε υπάρχουν µοναδικοί ακέραιοι π
(πηλίκο) και υ (υπόλοιπο) τέτοιοι ώστε να ισχύει

∆ = π · δ + υ, 0 ≤ υ < δ

Το παραπάνω Θεώρηµα ισχύει και γενικότερα για οποιουσδήποτε
ακέραιους α και β.

Θεώρηµα 1.1 Εαν α και β ακέραιοι µε β 6= 0, τότε υπάρχουν µοναδικοί ακέραιοι
κ και υ τέτοιοι, ώστε

α = κ · β + υ, 0 ≤ υ < |β|.

Παράδειγµα 1.1 Εαν α = −231 και β = 26 τότε από τη διαίρεση του 231 µε το 26
έχουµε 231 = 8 · 26 + 23 εποµένως

−231 = −8 · 26− 23

= −8 · 26− 26 + 26− 23

= −9 · 26 + 3

και 0 ≤ 3 < 26 δηλαδή το πηλίκο της διαίρεσης του −231 µε το 26 είναι −9 και το
υπόλοιπο είναι 3.

΄Ασκηση: Με τον ίδιο τρόπο να εκτελέσετε τις διαιρέσεις του −231 µε το −26 και
του 231 µε το −26.

2

Παρατήρηση: ΄Οπως γίνεται αντιληπτό από τα παραπάνω, όταν ο διαιρέτης της
ευκλείδειας διαίρεσης είναι ο n τότε τα δυνατά υπόλοιπα της διαίρεσης οποιουδή-
ποτε αριθµού µε το n είναι 0, 1, . . . , n − 1. ΄Αρα κάθε αριθµός α είναι της µορφής
k · n, k · n + 1, . . . , k · n + (n − 1). Ειδικά όταν n = 2 τότε τα δυνατά υπόλοιπα
είναι 0, 1. Εάν υ = 0 τότε ο α = 2k λέγεται άρτιος, ενώ εαν υ = 1 τότε ο α = 2k+1
λέγεται περιττός.

Παράδειγµα 1.2 Εαν ο a είναι ακέραιος τότε και ο A =
a(a2 + 2)

3
είναι ακέραιος.

Απόδειξη :
Επειδή τα δυνατά υπόλοιπα του a µε το 3 είναι 0,1,2, ο ακέραιος a έχει µία από

τις µορφές a = 3k ή a = 3k + 1 ή a = 3k + 2, k ∈ Z.

• Εαν a = 3k τότε A = 3k[(3k2)+2]
3

= k(9k2 + 2) ∈ Z.

4



Εισαγωγή στη Θεωρία Αριθµών 1 ∆ιαιρετότητα

• Εαν a = 3k + 1 τότε A = (3k+1)[(3k+1)2+2]
3

= (3k + 1)(3k2 + 2k + 1) ∈ Z.

• Εαν a = 3k + 2 τότε A = (3k+2)[(3k+2)2+2]
3

= (3k + 2)(3k2 + 4k + 2) ∈ Z.

2
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1.2 Βασικές Ιδιότητες ∆ιαιρετότητος ∆ιαιρετοτητα και Ισοτιµιες

1.2 Βασικές Ιδιότητες ∆ιαιρετότητος

Ορισµός 1.1 Λέµε ότι η διαίρεση του a µε το b (b 6= 0) είναι τέλεια, όταν το υπό-
λοιπο της διαίρεσής τους είναι ίσο µε µηδέν. Σε αυτή την περίπτωση λέµε ότι το b
διαιρεί (ακριβώς) το a ή ότι το a διαιρείται (ακριβώς) από το b ή ακόµα ότι ο a είναι
πολλαπλάσιο του b, και γράφουµε b|a ή a = πoλλ.b. ΄Αρα

b|a⇐⇒ ∃ k ∈ Z τέτοιο ώστε a = k · b.

Παρατήρηση: Για να δηλώσουµε ότι ο ακέραιος b δεν διαιρεί τον ακέραιο a,
γράφουµε b 6 | a ή ισοδύναµα a 6= πoλλ.b. Επίσης εαν b|a τότε ισοδύναµα a = kb
για κάποιο k ∈ Z ή ισοδύναµα a = (−k)(−b) που σηµαίνει ότι εαν ο b είναι
διαιρέτης του a, τότε και ο −b είναι διαιρέτης του a. Εποµένως οι διαιρέτες ενός
ακεραίου εµφανίζονται κατά Ϲεύγη αντίθετων ακεραίων.

Ως άµεσες συνέπειες του παραπάνω ορισµού έχουµε τις εξής ιδιότητες :

(i) a|0 για κάθε a ∈ Z∗,

(ii) Αν 0|b, τότε b = 0,

(iii) a|b⇔ −a|b⇔ a| − b⇔ |a| | |b|

(iv) ±1|a και ±a|a για κάθε a ∈ Z∗.

(v) Αν b|a, τότε kb|ka, για κάθε k ∈ Z∗.

Λόγω των παραπάνω ιδιοτήτων γίνεται ϕανερό ότι για τη µελέτη της διαιρετότητας
στο σύνολο των ακεραίων, είναι αρκετό να περιοριστούµε στο σύνολο των ϑετικών
ακεραίων.

Παρακάτω αναφέρουµε (χωρίς απόδειξη) τις ϐασικότερες ιδιότητες της διαιρετό-
τητας.

Πρόταση 1.1 ΄Εστω a, b, c, d ∈ Z. Τότε ισχύουν οι παρακάτω ιδιότητες :

(i) Εαν a|b και b|c, τότε a|c.

(ii) Εαν a|b και c|d, τότε ac|bd.

(iii) Εαν a|b τότε a|λb για κάθε ακέραιο λ ∈ Z.

(iv) Εαν a|b και a|c, τότε a|b+ c.

(v) Εαν a|b και b 6= 0, τότε |a| ≤ |b|.

(vi) Εαν a|b και b|a, τότε a = b ή a = −b (∆ήλαδή |a| = |b|).
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Εισαγωγή στη Θεωρία Αριθµών 1 ∆ιαιρετότητα

Παρατήρηση: Από τις ιδιότητες (iii), (iv) της παραπάνω Πρότασης προκύπτει ότι
εαν a|b και a|c, τότε a|kb + mc, για κάθε k,m ∈ Z. Ο ακέραιος kb + mc λέγεται
γραµµικός συνδυασµός των b και c.

Παράδειγµα 1.3 (Βασική Εφαρµογή) Να αποδείξετε ότι το γινόµενο n διαδοχικών
ακεραίων διαιρείται από το n.

Απόδειξη :
΄Εστω k, k + 1, . . . , k + (n− 1), n το πλήθος διαδοχικοί ακέραιοι. Θέτουµε A =

k(k + 1) · · · (k + (n− 1)). Τότε, από την ευκλείδεια διαίρεση, υπάρχουν ακέραιοι
q, r τέτοιοι, ώστε

k = nq + r, 0 ≤ r ≤ n− 1.

Αν r = 0, τότε n|k, απ’ όπου n|A. Αν r 6= 0 τότε 1 ≤ n− r ≤ n− 1. Οπότε

A = k(k + 1) · · · (k + n− r) · · · (k + n− 1)

= (nq + r) · · · (nq + r + n− r) · · · (nq + r + n− 1).

Καθώς nq + r + n− r = n(q + 1), παίρνουµε n|A.

2

Παράδειγµα 1.4 Να προσδιορίσετε όλους τους ακέραιους αριθµούς m που ικανο-
ποιούν τη σχέση m+ 1|m2 + 1.

Λύση:
Επειδή m + 1|m + 1, άρα λόγω της παρατήρησης της Πρότασης 1.1 έχουµε m +

1|m2 +m+ 2. Καθώς όµωςm2 +m+ 2 = m(m+ 1) + 2 καιm+ 1|m(m+ 1), η ίδια
παρατήρηση δίνει ότι m+ 1|2 απ’ όπου m+ 1 = ±1,±2 δηλαδή m = −3,−2, 0, 1.

2

Παράδειγµα 1.5 (∆ιαγωνισµός «Ευκλείδης» 1995) Θεωρούµε 6 διαδοχικούς ϕυσι-
κούς αριθµούς. ΄Εστω a το άθροισµα των τριών πρώτων και b το άθροισµα των τριών
άλλων. Είναι δυνατόν να ισχύει ab = 19951995;

Λύση:
Το άθροισµα τριών διαδοχικών αριθµών είναι πάντοτε πολλαπλάσιο του 3, διότι

αν n είναι ο µεσαίος τότε οι αριθµοί είναι οι n− 1, n, n+ 1 µε άθροισµα 3n. Συνεπώς
οι a, b είναι πολλαπλάσια του 3 κι έτσι το ab είναι πολλαπλάσιο του 9. ΄Οµως ο
αριθµός 19951995 δεν είναι πολλαπλάσιο του 9 αφού το άθροισµα των ψηφίων του
δεν διαιρείται µε το 9.

2

Παράδειγµα 1.6 (∆ιαγωνισµός «Ευκλείδης» 1995) Να εξετάσετε εαν υπάρχουν α-
κέραιοι x, y που ικανοποιούν την εξίσωση x2 + 4y = 1995.
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1.2 Βασικές Ιδιότητες ∆ιαιρετότητος ∆ιαιρετοτητα και Ισοτιµιες

Λύση:
Εαν ο x είναι περιττός δηλαδή x = 2k+ 1, k ∈ Z τότε x2 = 4k(k+ 1) + 1 δηλαδή

x2 =πολλ.4+1. Αν ο x είναι άρτιος δηλαδή x = 2k, k ∈ Z τότε x2 = 4k2 δηλαδή
x2 =πολλ.4.

Συνεπώς αφού το 4y είναι πολλ.4, ϑα έχουµε x2 + 4y = πολλ.4 είτε x2 + 4y =
πολλ.4+1 αλλά 1995=πολλ.4+3 άρα η εξίσωση είναι αδύνατη 1.

2

Παράδειγµα 1.7 Να δείξετε ότι για κάθε ϕυσικό αριθµό n ισχύει

9|10n + 3 · 4n+2 + 5.

Απόδειξη :
Θα εφαρµόσουµε τη µέθοδο της µαθηµατικής επαγωγής. Θέτουµε

P (n) = 10n + 3 · 4n+2 + 5.

Για n = 0 έχουµε P (0) = 54, που διαιρείται από το 9. Υποθέτουµε ότι 9|P (k) δηλαδή
ότι 9|10k + 3 · 4k+2 + 5. Τότε

P (k + 1) = 10k+1 + 3 · 4k+3 + 5 = 10 · 10k + 3 · 4 · 4k+2 + 5

= 10k + 3 · 4k+2 + 5 + 9 · 10k + 9 · 4k+2 = P (k) + 9(10k + 4k+2).

Καθώς 9|P (k), η παρατήρηση της Πρότασης 1.1 δίνει ότι 9|P (k + 1). Συνεπώς
ισχύει 9|P (n) για κάθε n ∈ N.

2

Παράδειγµα 1.8 Να δείξετε ότι για κάθε n ∈ Z ισχύει 4 6 | n2 + 2.

Απόδειξη :
Ας υποθέσουµε, αντίθετα, ότι υπάρχει ακέραιος n τέτοιος ώστε 4|n2 + 2. Τότε

έχουµε τις εξής δύο περιπτώσεις για τον ακέραιο n :

• Εαν n = 2k, όπου k ∈ Z, τότε n2 + 2 = 4k2 + 2. Καθώς 4|n2 + 2, έπεται ότι
4|4k2 + 2, δηλαδή 4|2, άτοπο.

• Εαν n = 2k + 1, όπου k ∈ Z, τότε n2 + 2 = (2k + 1)2 + 2 = 4k2 + 4k + 3.
Επειδή όµως 4|4k2 + 4k, έπεται ότι 4|3, άτοπο.

΄Αρα για κάθε n ∈ Z ισχύει 4 6 | n2 + 2.

2

1Φυσικά µπορεί να επιλυθεί άµεσα µε τη χρήση ισοτιµιών (για τις οποίες ϑα µιλήσουµε πιο
κάτω).
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Εισαγωγή στη Θεωρία Αριθµών 1 ∆ιαιρετότητα

1.3 Μέγιστος Κοινός ∆ιαιρέτης (Μ.Κ.∆.)

Πρόταση 1.2 (Αρχή της καλής διάταξης) ΄Εστω S ένα µη κενό υποσύνολο του N.
Τότε το S έχει ένα µοναδικό ελάχιστο στοιχείο, δηλαδή, ένα στοιχείο a ∈ S τέτοιο,
ώστε a ≤ x, για κάθε x ∈ S.

΄Εστω a1, . . . , an ακέραιοι αριθµοί από τους οποίους ένας τουλάχιστον είναι 6= 0.
Κάθε ακέραιος που διαιρεί καθένα από τους a1, . . . , an λέγεται κοινός διαιρέτης

των a1, . . . , an. Συµβολίζουµε µε S το σύνολο των ϑετικών κοινών διαιρετών των
a1, . . . , an. Το S είναι µη κενό διότι 1 ∈ S. Αν ak 6= 0 και d ∈ S τότε d|ak και
εποµένως d ≤ |ak|. ΄Αρα το σύνολο S είναι πεπερασµένο. Το µέγιστο στοιχείο του
S είναι ένας ϑετικός ακέραιος που λέγεται µέγιστος κοινός διαιρέτης (Μ.Κ.∆.)

των a1, . . . , an και συµβολίζεται µε (a1, . . . , an). Για κάθε a ∈ Z, το σύνολο των
ϑετικών διαιρετών του a συµπίπτει µε αυτό του−a. Εποµένως ισχύει (a1, . . . , an) =
(|a1|, . . . , |an|), δηλαδή ο Μ.Κ.∆. είναι ανεξάρτητος προσήµων. Επίσης, καθώς κάθε
ακέραιος είναι διαιρέτης του 0, έχουµε (0, a1, . . . , an) = (a1, . . . , an). Συνεπώς
µπορούµε να υποθέσουµε ότι κανένας εκ των ακεραίων a1, . . . , an δεν είναι µηδέν.

Αν (a1, . . . , an) = 1, τότε οι ακέραιοι a1, . . . , an καλούνται πρώτοι µεταξύ τους.
Επίσης εαν (ai, aj) = 1 για κάθε i, j ∈ {1, . . . , n} µε i 6= j, τότε οι ακέραιοι
a1, . . . , an καλούνται πρώτοι µεταξύ τους ανά δύο. Είναι προφανές ότι εαν οι
ακέραιοι a1, . . . , an είναι πρώτοι µεταξύ τους ανά δύο, τότε είναι και πρώτοι µεταξύ
τους. Το αντίστροφό όµως δεν ισχύει εν γένει.

Θεώρηµα 1.2 (Λήµµα Bezout) ΄Εστω a1, . . . , an µη µηδενικοί ακέραιοι και d =
(a1, . . . , an). Τότε υπάρχουν ακέραιοι k1, . . . , kn τέτοιοι, ώστε

d = k1a1 + · · ·+ knan.

Πόρισµα 1.1 ΄Εστω a1, . . . , an µη µηδενικοί ακέραιοι. Ο ϑετικός ακέραιος d είναι
ο Μ.Κ.∆. των a1, . . . , an αν και µόνο αν, ισχύουν τα εξής :

(i) d|a1, . . . , d|an,

(ii) Αν δ είναι ϑετικός ακέραιος µε δ|a1, . . . , δ|an, τότε δ|d.

Πόρισµα 1.2 ΄Εστω a1, . . . , an µη µηδενικοί ακέραιοι. Αν d είναι ένας ϑετικός
κοινός διαιρέτης των a1, . . . , an µε d = k1a1 + · · · + knan, όπου k1, . . . , kn ∈ Z, τότε
d = (a1, . . . , an).

Πόρισµα 1.3 ΄Εστω a1, . . . , an µη µηδενικοί ακέραιοι. Οι ακέραιοι a1, . . . , an είναι
πρώτοι µεταξύ τους, αν και µόνο αν, υπάρχουν k1, . . . , kn ∈ Z τέτοιοι ώστε 1 =
k1a1 + · · ·+ knan.
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1.3 Μέγιστος Κοινός ∆ιαιρέτης (Μ.Κ.∆.) ∆ιαιρετοτητα και Ισοτιµιες

Παράδειγµα 1.9 ΄Εστω ακέραιοι a, b πρώτοι µεταξύ τους. Να δείξετε ότι

(9a+ 7b, 4a+ 3b) = 1.

Απόδειξη :
΄Εστω d ο Μ.Κ.∆. των ακεραίων 9a+ 7b και 4a+ 3b. Τότε d|9a+ 7b και d|4a+ 3b.

Οπότε d|4(9a+7b)−9(4a+3b) και d|3(9a+7b)−7(4a+3b), απ’ όπου παίρνουµε d|b
και d|a αντίστοιχα. Συνεπώς, το Πόρισµα 1.1 δίνει d|(a, b) απ’ όπου d|1. Εποµένως
d = 1.

2

Πρόταση 1.3 ΄Εστω λ, a1, . . . , an µη µηδενικοί ακέραιοι. Ισχύουν τα εξής :

(i) (λa1, . . . , λan) = |λ|(a1, . . . , an),

(ii) αν (a1, . . . , an) = d, τότε
(
a1
d
, . . . , an

d

)
= 1,

(iii) (a1, . . . , an) = (a1 + k2a2 + · · ·+ knan, a2, . . . , an), όπου k2, . . . , kn ∈ Z.

Παράδειγµα 1.10 Εαν a, b είναι δύο ακέραιοι πρώτοι µεταξύ τους, τότε να δείξετε
ότι (a+ b, a− b) = 1 ή 2.

Απόδειξη :
Πράγµατι έστω d = (a + b, a − b). Τότε d|a + b και d|a − b. Εποµένως έχουµε

d|(a+ b) + (a− b) και d|(a+ b)− (a− b), δηλαδή d|2a και d|2b οπότε d|(2a, 2b) και
λόγω της Πρότασης 1.3(i) παίρνουµε (2a, 2b) = 2(a, b) = 2 άρα d|2 οπότε d = 1 ή 2.

2

Πρόταση 1.4 ΄Εστω a1, . . . , an µη µηδενικοί ακέραιοι µε n > 2. Για κάθε k, 1 ≤
k ≤ n− 2 ισχύει

(a1, . . . , an) = (a1, . . . , ak, (ak+1, . . . , an)) .

Παρατήρηση: Η παραπάνω Πρόταση ανάγει τον υπολογισµό του Μ.Κ.∆. πεπερα-
σµένου πλήθους ακεραίων στον υπολογισµό του Μ.Κ.∆. δύο ακεραίων.

Πρόταση 1.5 (Βασική Πρόταση) ΄Εστω a, b, c τρεις µη µηδενικοί ακέραιοι. Εαν a|bc
και (a, b) = 1 τότε a|c.

Παράδειγµα 1.11 (Ρουµανία 2000) Να αποδειχθεί ότι δεν υπάρχουν ϕυσικοί αριθ-
µοί x, y και z για τους οποίους να ισχύουν ταυτόχρονα οι σχέσεις

5x− 3y + 10z = 0 και y(x+ 2z) = 2004.

Απόδειξη :
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΄Εστω ότι υπάρχουν τέτοιοι ϕυσικοί µε τις ιδιότητες

5x− 3y + 10z = 0 (1) και y(x+ 2z) = 2004.

Τότε η (1) γράφεται : 5x + 10z = 3y ⇔ 5(x + 2z) = 3y. Εποµένως 5|3y και επειδή
(5, 3) = 1 άρα 5|y. Αλλά τότε 5|y(x+ 2z) δηλαδή 5|2004 (αφού y(x+ 2z) = 2004).
Αυτό όµως είναι αδύνατο, συνεπώς δεν υπάρχουν ϕυσικοί αριθµοί µε τις ιδιότητες
της εκφωνήσεως.

2
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1.4 Ευκλείδειος Αλγόριθµος ∆ιαιρετοτητα και Ισοτιµιες

1.4 Ευκλείδειος Αλγόριθµος

Ο Ευκλείδειος αλγόριθµος περιγράφει µία διαδικασία για την εύρεση του Μ.Κ.∆.
δύο ακεραίων.

Ας υποθέσουµε ότι a, b ∈ Z, και χωρίς ϐλάβη της γενικότητος, b > 0, διότι εαν
ήταν b < 0, τότε (a, b) = (a, |b|), και εαν ήταν b = 0, τότε (a, b) = |a|. Θέτουµε
d := (a, b).

Από την Ευκλείδεια διαίρεση µπορούµε να ϐρούµε ακεραίους q και r τέτοιους,
ώστε a = q0b+ r0 όπου 0 ≤ r0 < b.

Ας σηµειωθεί ότι (a, b) = (b, r0), επειδή d | a και d | b, συνεπώς d | r0 = a− q0b.
Εάν οι b και r0 είχαν κοινό διαιρέτη d′ µεγαλύτερο του d, τότε το d′ ϑα ήταν κοινός
διαιρέτης των a και b, το οποίο ϑα ερχόταν σε αντίθεση µε την επιλογή του d ως
µέγιστου. Συνεπώς, d = (b, r0).

Μπορούµε να επαναλάβουµε τη διαίρεση, αυτή τη ϕορά µε τα b και r0. Συνεχί-
Ϲοντας µε τον ίδιο τρόπο διαδοχικά έχουµε

a = q0b+ r0 όπου 0 ≤ r0 < b

b = q1r0 + r1 όπου 0 ≤ r1 < r0

r0 = q2r1 + r2 όπου 0 ≤ r2 < r1

r1 = q3r2 + r3 όπου 0 ≤ r3 < r2
...

Συνεπώς παίρνουµε µία ϕθίνουσα ακολουθία µη αρνητικών ακεραίων b > r0 >
r1 > r2 > . . . , η οποία πρέπει να ϕτάνει καποια στιγµή στο 0. Ας υποθέσουµε
ότι αυτό γίνεται στο n-οστό ϐήµα. Τότε rn = 0 και ο αλγόριθµος τερµατίζει.
Μπορούµε πολύ εύκολα να γενικεύσουµε αυτό το επιχείρηµα για να δείξουµε ότι
d = (rk−1, rk) = (rk, rk+1) για k = 0, 1, 2, . . ., όπου r−1 = b. Συνεπώς, d =
(rn−1, rn) = (rn−1, 0) = rn−1.

Πιο συγκεκριµένα, ο Μ.Κ.∆. είναι το ελάχιστο µη µηδενικό υπόλοιπο στον πα-
ϱαπάνω αλγόριθµο.

Ο παραπάνω αλγόριθµος µας δίνει κάτι παραπάνω εκτός από τον Μ.Κ.∆. ∆ίνει
ένα τρόπο για να εκφράσουµε τον Μ.Κ.∆. d, ως γραµµικό συνδυασµό των a και
b, ένα Θεώρηµα γνωστό ως Λήµµα Bezout. (Θεώρηµα 1.2). Ακολουθώντας την
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αντίστροφη πορεία από την προηγούµενη, έχουµε

a− q0b = r0

b− q1r0 = r1

r0 − q2r1 = r2

r1 − q3r2 = r3
...

rn−3 − qn−1rn−2 = rn−1

rn−2 = qnrn−1

συνεπώς, αντικαθιστώντας κάθε υπόλοιπο rk στην επόµενη εξίσωση παίρνουµε

b− q1(a− q0b) = k1a+ l1b = r1
(a− q0b)− q2(k1a+ l1b) = k2a+ l2b = r2

(k1a+ l1b)− q3(k2a+ l2b) = k3a+ l3b = r3
...

...
(kn−3a+ ln−3b)− qn(kn−2a+ ln−2b) = kn−1a+ ln−1b = rn−1

Παράδειγµα 1.12 Να ϐρείτε τον Μ.Κ.∆. των ακεραίων 391 και 323, κάνοντας χρή-
ση του Ευκλειδείου Αλγόριθµου και να γράψετε τον Μ.Κ.∆. ως γραµµικό συνδυασµό
των 391 και 323.

Λύση: Είναι
391 = 1 · 323 + 68

323 = 4 · 68 + 51

68 = 1 · 51 + 17

51 = 3 · 17 + 0.

Εποµένως (391,323)=17. Στη συνέχεια ϑα ϐρούµε ακεραίους x, y έτσι, ώστε 17 =
391x+ 323y. ΄Εχουµε

17 = 68− 51 = 68− (323− 4 · 68) = −323 + 5 · 68

= −323 + 5(391− 323) = 5 · 391− 6 · 323

Εποµένως 17 = 5 · 391 + (−6) · 323.

Παράδειγµα 1.13 Θα ϐρούµε τον Μ.Κ.∆. των a = 756 και b = 595. Στον παρακάτω
πίνακα, το r χρησιµοποιείται για τα υπόλοιπα που εµφανίζονται από τις διαδοχικές
διαιρέσεις, το q για την αντίστοιχη ακολουθία πηλίκων και οι στήλες των k, l εί-
ναι η αντίστοιχη ακολουθία των ki και li που περιγράφεται παραπάνω. Συνεπώς,
(756, 595) = 7 και µάλιστα 37 · 756− 47 · 595 = 7.
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r q k l
756 1 0
595 1 0 1
161 3 1 −1
112 1 −3 4
49 2 4 −5
14 3 −11 14
7 2 37 −47
0

1.5 Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.)

΄Εστω a1, . . . , an ∈ Z. ΄Ενας ακέραιος µ καλείται κοινό πολλαπλάσιο των a1, . . . , an
εαν a1|µ, . . . , an|µ. Παρατηρούµε ότι εαν ένας από τους ακέραιους a1, . . . , an είναι
το 0, τότε το µοναδικό πολλαπλάσιο τους είναι το 0. Ας υποθέσουµε στη συνέχεια
ότι οι ακέραιοι a1, . . . , an είναι µη µηδενικοί. Ο ϕυσικός |a1 · · · an| είναι ένα κοινό
πολλαπλάσιο των a1, . . . , an. Εποµένως, (λόγω της Πρότασης 1.2) το σύνολο των
ϑετικών πολλαπλασίων των a1, . . . , an είναι µη κενό, εποµένως έχει ένα ελάχιστο
στοιχείο. Το στοιχείο αυτό καλείται Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.) των
a1, . . . , an και συµβολίζεται µε [a1, . . . , an]. Καθώς το σύνολο των ϑετικών πολλα-
πλασίων των a1, . . . , an είναι το ίδιο µε εκείνο των |a1|, . . . , |an|, συµπεραίνουµε ότι
[a1, . . . , an] = [|a1|, . . . , |an|].

Πρόταση 1.6 ΄Εστω a1, . . . , an µη µηδενικοί ακέραιοι. Ο ϑετικός ακέραιος m είναι
το Ε.Κ.Π. των a1, . . . , an, αν και µόνο αν, έχουµε

(i) a1|m, . . . , an|m,

(ii) εαν µ είναι ϑετικός ακέραιος µε a1|µ, . . . , an|µ, τότε m|µ.

Πρόταση 1.7 ΄Εστω λ, a1, . . . , an µη µηδενικοί ακέραιοι. Ισχύουν τα εξής :

(i) [λa1, . . . , λan] = |λ|[a1, . . . , an],

(ii) αν [a1, . . . , an] = m τότε
(
m
a1
, . . . , m

an

)
= 1.

Πρόταση 1.8 ΄Εστω a1, . . . , an µη µηδενικοί ακέραιοι µε n > 2. Για κάθε k, 1 ≤
k ≤ n− 2 ισχύει

[a1, . . . , an] = [a1, . . . , ak, [ak+1, . . . , an]] .

Παρατήρηση: Η παραπάνω Πρόταση ανάγει τον υπολογισµό του Ε.Κ.Π. πεπερα-
σµένου πλήθους ακεραίων στον υπολογισµό του Ε.Κ.Π. δύο ακεραίων.
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1.6 Πρώτοι Αριθµοί

Ορισµός 1.2 ΄Ενας ϑετικός ακέραιος p > 1 καλείται πρώτος εαν οι µόνοι διαιρέτες
του είναι οι ακέραιοι ±1 και ±p. ΄Ενας πρώτος αριθµός που είναι διαιρέτης ενός
ακέραιουm καλείται πρώτος διαιρέτης ή πρώτος παράγοντας τουm. ΄Ενας ϑετικός
ακέραιος n > 1 που δεν είναι πρώτος, καλείται σύνθετος. Σε αυτή την περίπτωση
υπάρχουν d, e τέτοιοι, ώστε

n = d · e και 1 < d ≤ e < n.

(Το 2 είναι ο µοναδικός άρτιος πρώτος αριθµός).

Πρόταση 1.9 Κάθε ακέραιος αριθµός a > 1 έχει ένα τουλάχιστον πρώτο διαιρέτη.

Παράδειγµα 1.14 Να ϐρείτε όλους τους ϑετικούς ακεραίους n για τους οποίους οι
αριθµοί 3n− 4, 4n− 5, 5n− 3 είναι όλοι πρώτοι αριθµοί.

Λύση:
Το άθροισµα των 3 αριθµών είναι άρτιος, συνεπώς τουλάχιστον ένας από αυτούς

είναι άρτιος. Ο µοναδικός άρτιος πρώτος είναι το 2. Μόνο οι 3n−4 και 5n−3 µπορεί
να είναι άρτιοι. Λύνοντας λοιπόν τις εξισώσεις 3n− 4 = 2 και 5n− 3 = 2 παίρνουµε
n = 2 και n = 1 αντίστοιχα. Μόνο για n = 2 οι 3 παραπάνω αριθµοί είναι πρώτοι
άρα είναι και η µοναδική λύση.

2

Παράδειγµα 1.15 (AHSME 1976) Εαν οι p και q είναι πρώτοι και το τριώνυµο
x2 − px+ q = 0 έχει διακεκριµένες ϑετικές ακέραιες ϱίζες, να ϐρείτε τα p και q.

Λύση:
΄Εστω x1 και x2 µε x1 < x2, οι δύο διακεκριµένες ϑετικές ακέραιες ϱίζες. Τότε

x2 − px+ q = (x− x1)(x− x2), το οποίο δίνει ότι p = x1 + x2 και q = x1x2. Καθώς
ο q είναι πρώτος, άρα x1 = 1. Συνεπώς οι q = x2 και p = x2 + 1 είναι διαδοχικοί
πρώτοι αριθµοί, άρα q = 2 και p = 3.

2

Παράδειγµα 1.16 (ARML 2003) Να ϐρείτε το µεγαλύτερο διαιρέτη του αριθµού
1001001001 που δεν ξεπερνά το 10000.

Λύση:
΄Εχουµε

1001001001 = 1001 · 106 + 1001 = 1001 · (106 + 1) = 7 · 11 · 13 · (106 + 1).

Ας σηµειωθεί ότι

x6 + 1 = (x2)3 + 1 = (x2 + 1)(x4 − x2 + 1).

Αλεξανδρος Γ. Συγκελακης 15



1.6 Πρώτοι Αριθµοί ∆ιαιρετοτητα και Ισοτιµιες

΄Αρα 106 + 1 = 101 · 9901, άρα 1001001001 = 7 · 11 · 13 · 101 · 9901. ∆εν είναι
δύσκολο τώρα να ελέγξουµε ότι κανένας συνδυασµός των 7,11,13 και 101 δεν
ϕτιάχνει γινόµενο που να ξεπερνά το 9901 και να είναι µικρότερο του 1000, άρα η
απάντηση είναι 9901.

2

Παράδειγµα 1.17 ΄Εστω n ένας ϑετικός ακέραιος. Να αποδειχθεί ότι ο 32n + 1
διαιρείται από το 2 αλλά όχι από το 4 2.

Απόδειξη :
Καταρχήν, ο 32n είναι περιττός και ο 32n + 1 είναι άρτιος. Επίσης,

32n = (32)2
n−1

= 92n−1

= (8 + 1)2
n

.

Από το διώνυµο του Νεύτωνα

(x+ y)m = xm +

(
m

1

)
xm−1y +

(
m

2

)
xm−2y2 + · · ·+

(
m

m− 1

)
xym−1 + ym,

για x = 8, y = 1 και m = 2n−1, όλοι οι όροι του αθροίσµατος πλην του τελευταίου
(που είναι ym = 1), είναι πολλαπλάσια του 8 (τα οποία είναι πολλαπλάσια του 4).
Συνεπώς το υπόλοιπο του 32n όταν διαιρεθεί µε το 4 είναι ίσο µε 1, και το υπόλοιπο
του 32n + 1 µε το 4 είναι ίσο µε 2.

Παρατήρηση: Φυσικά το παραπάνω πρόβληµα απλοποιείται εαν κάνουµε χρήση
ισοτιµιών modulo 4 (ϐλέπε παρακάτω).

2

Παράδειγµα 1.18 Να ϐρεθεί το n έτσι ώστε 2n‖31024 − 1.

Λύση:
Η απάντηση είναι 12. Ας σηµειώσουµε ότι 1024 = 210 και x2−y2 = (x−y)(x+y).

Τότε, έχουµε

3210 − 1 =
(

329 + 1
)(

329 − 1
)

=
(

329 + 1
)(

328 + 1
)(

328 − 1
)

= · · · =
(

329 + 1
)(

328 + 1
)
· · ·
(

321 + 1
)(

320 + 1
)

(3− 1)

΄Οµως από το παράδειγµα (1.17), 2‖32k + 1 για ϑετικούς ακεραίους k. Συνεπώς η
απάντηση είναι 9+2+1=12.

2

2∆ηλαδή 2‖32n + 1.
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Εισαγωγή στη Θεωρία Αριθµών 1 ∆ιαιρετότητα

Η ακόλουθη Πρόταση είναι πολύ χρήσιµη σε ασκήσεις στις οποίες χρειαζόµαστε
την αναπαράσταση ενός πρώτου αριθµού.

Πρόταση 1.10 Κάθε πρώτος αριθµός είναι είτε της µορφής 6k + 1 είτε της µορφής
6k + 5.

Θεώρηµα 1.3 Το πλήθος των πρώτων είναι άπειρο.

Απόδειξη:
3

Ας υποθέσουµε ότι p1, . . . , pn είναι όλοι οι πρώτοι αριθµοί. Θεωρούµε τον αριθµό

A = p1 · · · pn + 1.

Σύµφωνα µε την Πρόταση 1.9, υπάρχει πρώτος p τέτοιος, ώστε p|A. Καθώς p1, . . . , pn
είναι όλοι οι πρώτοι, έχουµε p = pj για κάποιο δείκτη j µε 1 ≤ j ≤ n. Εποµένως
p|A και p|p1 · · · pn απ’ όπου παίρνουµε p|1 που είναι άτοπο. Συνεπώς, το πλήθος
των πρώτων είναι άπειρο.

2

Πρόταση 1.11 Εαν µε pn συµβολίσουµε τον n-οστό πρώτο αριθµό, τότε ισχύει (η
απόδειξη µε επαγωγή)

pn ≤ 22n−1

.

Παράδειγµα 1.19 Για κάθε ϕυσικό αριθµό n > 1 υπάρχουν n διαδοχικοί ϕυσικοί
αριθµοί, κανείς από τους οποίους δεν είναι πρώτος αριθµός.

Απόδειξη :
Αρκεί να ϑεωρήσουµε τους εξής n διαδοχικούς ϕυσικούς αριθµούς

(n+ 1)! + 2, (n+ 1)! + 3, · · · , (n+ 1)! + (n+ 1).

Κανείς από τους αριθµούς αυτούς δεν είναι πρώτος, διότι για κάθε m = 2, 3, · · · , n+
1, ο αριθµός (n+ 1)! +m διαιρείται δια του m 4.

Παρατήρηση: Από το παραπάνω παράδειγµα προκύπτει ότι υπάρχουν όσο µεγάλα
κενά πρώτων αριθµών ϑέλουµε, στο σύνολο των ϕυσικών αριθµών.

Ωστόσο, ανοικτό παραµένει το ερώτηµα αν µπορούµε µε κάποιο άλλο τρόπο (εκτός
από εξαντλητικό ψάξιµο) να ϐρούµε τους µικρότερους διαδοχικούς αριθµούς που να
έχουν το επιθυµητό κενό. Αυτή είναι εύλογη ερώτηση αν αναλογιστούµε ότι το παρα-
γοντικό µεγαλώνει πολύ πολύ γρήγορα. Να αναφέρουµε ότι π.χ. µε τον παραπάνω
τρόπο για να προσδιορίσουµε 5 διαδοχικούς σύνθετους αριθµούς µπορούµε να πά-
ϱουµε τους αριθµούς 6!+2, 6!+3, 6!+4, 6!+4, 6!+6 δηλαδή τους αριθµούς 722, 723,
724, 725, 726. ΄Οµως οι 5 πρώτοι διαδοχικοί ϕυσικοί αριθµοί που συναντάµε είναι
οι 24,25,26,27,28 (ασφαλώς πολύ πολύ µικρότεροι από εκείνους που προκύπτουν
µε την παραπάνω µέθοδο).

3Πρόκειται για µία πολύ όµορφη απόδειξη η οποία οφείλεται στον Ευκλείδη και την οποία
παραθέτουµε για ιστορικούς λόγους.

4Επίσης οι αριθµοί (n+ 1)!− (n+ 1), . . . , (n+ 1)!− 3, (n+ 1)!− 2 είναι αποδεκτοί.
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1.6 Πρώτοι Αριθµοί ∆ιαιρετοτητα και Ισοτιµιες

2

Η Πρόταση που ακολουθεί µας δίνει ένα τρόπο για να ελέγχουµε εαν ένας ϕυσι-
κός αριθµός είναι πρώτος.

Πρόταση 1.12 Κάθε σύνθετος ϕυσικός αριθµός a > 1, έχει ένα τουλάχιστον πρώτο
διαιρέτη p, µε p ≤

√
a.

Πόρισµα 1.4 Εαν ένας ϕυσικός αριθµός a > 1 δεν διαιρείται από κανένα πρώτο p,
µε p ≤

√
n, τότε ο αριθµός a είναι πρώτος.

Παράδειγµα 1.20 Θα εξετάσουµε έαν ο ακέραιος 383 είναι πρώτος. ΄Εχουµε 19 <√
383 < 20. Οι πρώτοι που είναι ≤ 19 είναι οι 2,3,5,7,11,13,17 και 19. Κανένας

από αυτούς δεν διαιρεί το 383. Εποµένως ο αριθµός 383 είναι πρώτος.

Πρόταση 1.13 ΄Εστω a, b ακέραιοι 6= 0, 1 και p ένας πρώτος. Εαν p|ab τότε p|a ή
p|b.

Γενίκευση: ΄Εστω a1, . . . , an ακέραιοι 6= 0, 1 και p ένας πρώτος. Εαν p|a1 · · · an
τότε p|am για κάποιο δείκτη m (1 ≤ m ≤ n).

Το ακόλουθο Θεώρηµα είναι ένα από τα σηµαντικότερα της Θεωρίας Αριθµών
και είναι γνωστό ως το Θεµελιώδες Θεώρηµα της Αριθµητικής.

Θεώρηµα 1.4 (Θεµελιώδες Θεώρηµα της Αριθµητικής) Κάθε ϕυσικός a > 1 ανα-
λύεται σε γινόµενο πρώτων κατά ένα και µόνο τρόπο, αν παραβλέψουµε την τάξη
των παραγόντων στο γινόµενο.

Ορισµός 1.3 Σύµφωνα µε το παραπάνω Θεώρηµα, εαν a είναι ένας ϕυσικός > 1,
τότε υπάρχουν διαφορετικοί πρώτοι p1, . . . , pk και ϕυσικοί a1, . . . , ak > 0 έτσι, ώστε

a = pa11 · · · p
ak
k .

Η παραπάνω γραφή του a ϑα καλείται πρωτογενής ανάλυση του a.

Πρόταση 1.14 ΄Εστω a ένας ϕυσικός > 1 και a = pa11 · · · p
ak
k η πρωτογενής του

ανάλυση. Ο ϕυσικός αριθµός d διαιρεί τον a, αν και µόνο αν, d = pβ11 · · · p
βk
k µε

0 ≤ βi ≤ ai (i = 1, . . . , k).

Παράδειγµα 1.21 (Ευκλείδης 1995) Να προσδιορίσετε όλα τα Ϲευγάρια ϕυσικών
αριθµών x, y που ικανοποιούν την εξίσωση x2 = y2 + 2y + 9.

Λύση:
x2 = y2 + 2y + 9⇔ x2 − (y + 1)2 = 8⇔ (x− y − 1)(x+ y + 1) = 8. Οι αριθµοί

x− y, x + y είναι είτε και οι δύο άρτιοι είτε και οι δύο περιττοί, αν όµως ήταν άρτιοι
τότε οι αριθµοί x− y− 1, x+ y+ 1 ϑα ήταν περιττοί µε γινόµενο περιττό, άτοπο. ΄Αρα
x − y περιττός και x + y περιττός. Μάλιστα αφού ο x + y + 1 είναι ϑετικός πρέπει
x− y − 1 ϑετικός. ΄Αρα (x− y − 1, x+ y + 1) = (2, 4) ή (4, 2) απ’ όπου παίρνουµε
και τη µοναδική λύση (x, y) = (3, 0).
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Εισαγωγή στη Θεωρία Αριθµών 1 ∆ιαιρετότητα

2

Παράδειγµα 1.22 (Ευκλείδης 1997) Οι ϕυσικοί αριθµοί a, b (a, b ∈ N∗) είναι τέ-
τοιοι, ώστε

a3 + 1

b+ 1
+
b3 + 1

a+ 1
∈ N.

Να αποδείξετε ότι κάθε ένα από τα κλάσµατα
a3 + 1

b+ 1
,
b3 + 1

a+ 1
είναι ϕυσικοί.

Απόδειξη :
΄Εστω (a+ 1, b+ 1) = d. Τότε a+ 1 = d · p1p2 · · · pk και b+ 1 = d · q1q2 · · · ql, όπου

pi, qj πρώτοι µε pi 6= qj, ∀i = 1, 2 . . . , k και j = 1, 2, . . . , l αλλά όχι κατ’ ανάγκη οι
pi διαφορετικοί µεταξύ τους ούτε οι qj µεταξύ τους.

΄Εχουµε διαδοχικά

a3 + 1

b+ 1
+
b3 + 1

a+ 1
=

(a+ 1)(a2 − a+ 1)

b+ 1
+

(b+ 1)(b2 − b+ 1)

a+ 1

=
d · p1p2 · · · pk(a2 − a+ 1)

d · q1q2 · · · ql
+
d · q1q2 · · · ql(b2 − b+ 1)

d · p1p2 · · · pk

=
p21p

2
2 · · · p2k(a2 − a+ 1) + q21q

2
2 · · · q2l (b2 − b+ 1)

q1q2 · · · qlp1p2 · · · pk
∈ N

Εφόσον τα qj διαιρούν τον αριθµό q21q
2
2 · · · q2l (b2 − b+ 1) και το άθροισµα

p21p
2
2 · · · p2k(a2 − a+ 1) + q21q

2
2 · · · q2l (b2 − b+ 1),

ϑα διαιρούν και τη διαφορά τους δηλαδή τον αριθµό p21p
2
2 · · · p2k(a2 − a+ 1). ΄Οµως

τα qj δεν διαιρούν τον αριθµό p21p
2
2 · · · p2k άρα τα qj διαιρούν τον a2 − a+ 1 δηλαδή

a2 − a+ 1

q1q2 · · · ql
∈ N ⇒ d(a2 − a+ 1)

d · q1q2 · · · ql
∈ N

⇒ d(a2 − a+ 1)

b+ 1
∈ N

⇒ p1p2 · · · pk ·
d(a2 − a+ 1)

b+ 1
∈ N

⇒ (a+ 1)(a2 − a+ 1)

b+ 1
∈ N

⇒ a3 + 1

b+ 1
∈ N

και εφόσον
a3 + 1

b+ 1
+
b3 + 1

a+ 1
∈ N άρα b3+1

a+1
∈ N.

2
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1.7 Εφαρµογές στον Μ.Κ.∆. και στο Ε.Κ.Π

Πρόταση 1.15 ΄Εστω a1, . . . , an µη µηδενικοί ακέραιοι µε

|a1| = pa111 · · · p
a1k
k , . . . , |an| = pan1

1 · · · p
ank
k

όπου p1, . . . , pk είναι πρώτοι και aij ϕυσικοί αριθµοί (i = 1, . . . , n, j = 1, . . . , k).
Τότε

(a1, . . . , an) = pd11 · · · p
dk
k ,

όπου dj = min {a1j, . . . , anj} (j = 1, . . . , k).

Πόρισµα 1.5 ΄Εστω a1, . . . , an µη µηδενικοί ακέραιοι και m ∈ N. Τότε

(am1 , . . . , a
m
n ) = (a1, . . . , an)m.

Πρόταση 1.16 ΄Εστω a, b1, · · · , bn (n ≥ 2) µη µηδενικοί ακέραιοι και οι b1, · · · , bn
πρώτοι µεταξύ τους ανά δύο. Τότε

(a, b1, . . . , bn) = (a, b1) · · · (a, bn).

Πόρισµα 1.6 ΄Εστω a, b1, . . . , bn (n ≥ 2) µη µηδενικοί ακέραιοι και οι b1, . . . , bn
πρώτοι µεταξύ τους ανά δύο. Εαν b1|a, . . . , bn|a τότε b1 · · · bn|a.

Παράδειγµα 1.23 ΄Εστω n ένας περιττός ακέραιος > 1. Να δείξετε ότι

24|n(n2 − 1).

Απόδειξη :
Ο ακέραιος A = n(n2 − 1) = (n − 1)n(n + 1) είναι γινόµενο τριών διαδιχικών

ακεραίων συνεπώς είναι πολλαπλάσιο του 3 άρα 3|A. Επειδή ο ακέραιος n είναι
περιττός > 1, υπάρχει k ∈ N µε k 6= 0 έτσι, ώστε n = 2k + 1. Οπότε

A = 4k(k + 1)(2k + 1).

΄Ενας από τους ϕυσικούς k, k + 1 είναι άρτιος άρα 8|A. Τέλος, καθώς (3, 8) = 1, το
πόρισµα (3.1) δίνει το Ϲητούµενο 24|A.

2

Πρόταση 1.17 ΄Εστω a1, . . . , an µη µηδενικοί ακέραιοι µε

|a1| = pa111 · · · p
a1k
k , . . . , |an| = pan1

1 · · · p
ank
k

όπου p1, . . . , pk είναι πρώτοι και aij ϕυσικοί αριθµοί (i = 1, . . . , n, j = 1, . . . , k). Τότε

[a1, . . . , an] = pc11 · · · p
ck
k ,

όπου cj = max {a1j, . . . , anj} (j = 1, . . . , k).
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Εισαγωγή στη Θεωρία Αριθµών 1 ∆ιαιρετότητα

Πόρισµα 1.7 ΄Εστω a1, . . . , an µη µηδενικοί ακέραιοι και m ∈ N. Τότε

[am1 , . . . , a
m
n ] = [a1, . . . , an]m.

Παράδειγµα 1.24 Οι προτάσεις (1.15), (1.17) είναι πολύ χρήσιµες για την εύρεση
του Μ.Κ.∆. και Ε.Κ.Π. δύο ή περισσοτέρων ϕυσικών στην περίπτωση που γνωρίζουµε
την πρωτογενή τους ανάλυση. Για τον Μ.Κ.∆. αρκεί να πάρουµε το γινόµενο όλων
των πρώτων που εµφανίζονται στην πρωτογενή ανάλυση κάθε αριθµού υψωµένο στη
µικρότερη δύναµη (εαν κάποιος πρώτος δεν εµφανίζεται στην πρωτογενή ανάλυση
του αριθµού, τότε ϑεωρούµε ότι εµφανίζεται µε εκθέτη 0, συνεπώς αυτός ο εκθέτης
είναι και ο µικρότερος που εµφανίζεται για τον εν λόγω πρώτο). Για το Ε.Κ.Π.
αρκεί να πάρουµε το γινόµενο όλων των πρώτων που εµφανίζονται στην πρωτογενή
ανάλυση κάθε αριθµού υψωµένο στη µεγαλύτερη δύναµη. ΄Ετσι, ο Μ.Κ.∆. των
αριθµών 49000 = 23 · 53 · 72, 36400 = 24 · 52 · 7 · 13, 27500 = 22 · 54 · 11 είναι
22 ·52 ·70 ·110 ·130 = 100. ενώ το Ε.Κ.Π. των ίδιων είναι 24 ·54 ·72 ·11 ·13 = 70070000.

Πρόταση 1.18 ΄Εστω a, b δύο µη µηδενικοί ακέραιοι. Τότε

(a, b) · [a, b] = |ab|.

Παρατήρηση: Για περισσότερους από δύο ακεραίους, δεν ισχύει ανάλογη σχέση
µε την παραπάνω. ∆ηλαδή γενικά, έχουµε

(a1, . . . , an) · [a1, . . . , an] 6= |a1 · · · an| για n > 2.

Για παράδειγµα, (6, 8, 10) · [6, 8, 10] = 2 · 120 = 240 6= 480 = 6 · 8 · 10.
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∆ιαιρετοτητα και Ισοτιµιες

2 Ισοτιµίες

2.1 Ορισµός και ϐασικές Ιδιότητες

Ορισµός 2.1 ΄Εστω n ένας ένας ϑετικός ακέραιος. ∆ύο ακέραιοι a, b λέγονται
ισοϋπόλοιποι µε µέτρο n, όταν διαιρούµενοι µε το n αφήνουν το ίδιο υπόλοιπο. Τότε
γράφουµε ότι

a ≡ b (mod n)

και διαβάζουµε «a ισοϋπόλοιπο µε το b µόντουλο n». Εαν ο ακέραιος a δεν είναι
ισουπόλοιπος µε τον b µόντουλο n, γράφουµε

a 6≡ b (mod n)

.

Για παράδειγµα 10 ≡ 2 (mod 4), 11 ≡ −15 (mod 13) ενώ −7 6≡ −11 (mod 5).

Θεώρηµα 2.1

a ≡ b (mod n)⇐⇒ n|a− b

΄Αµεσες συνέπειες του ορισµού είναι οι επόµενες ιδιότητες.

Πόρισµα 2.1 (i) a ≡ a (mod n) (ανακλαστική ιδιότητα).

(ii) Εαν a ≡ b (mod n), τότε b ≡ a (mod n) (συµµετρική ιδιότητα).

(iii) Εαν a ≡ b (mod n) και b ≡ c (mod n), τότε a ≡ c (mod n)
(µεταβατική ιδιότητα).

Πόρισµα 2.2 (i) a ≡ 0 (mod n)⇔ n|a,

(ii) Ο ακέραιος a είναι άρτιος, αν και µόνο αν, a ≡ 0 (mod 2),

(iii) Ο ακέραιος a είναι περιττός, αν και µόνο αν, a ≡ 1 (mod 2),

(iv) Εαν a ≡ b (mod n) και m|n τότε a ≡ b (mod m),

(v) Για κάθε Ϲεύγος ακεραίων a, b ισχύει a ≡ b (mod 1),

(vi) Εαν το υπόλοιπο της διαίρεσης του a µε το n είναι υ, τότε a ≡ υ (mod n).

Πρόταση 2.1 ΄Εστω a, b, c, d ∈ Z και f(x) ένα πολυώνυµο µε ακέραιους συντελε-
στές. Εαν a ≡ b (mod n) και c ≡ d (mod n), τότε

(i) a+ c ≡ b+ d (mod n) και ac ≡ bd (mod n),

(ii) am ≡ bm (mod n), για κάθε m ∈ N,
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(iii) f(a) ≡ f(b) (mod n).

Πρόταση 2.2 ΄Εστω a, b, k ∈ Z µε k 6= 0 και d = (n, k). Τότε

ka ≡ kb (mod n)⇐⇒ a ≡ b (mod
n

d
).

Οι ισοτιµίες εµφανίζονται πολύ συχνά στη καθηµερινή µας Ϲωή.

Για παράδειγµα, ο ωροδείκτης των ϱολογιών δείχνει την ώρα modulo 12 και ο
χιλιοµετρικός δείκτης των αυτοκινήτων δείχνει τα χιλιόµετρα που έχουµε διανύσει
modulo 100.000. ΄Ετσι, όταν η ώρα είναι 18, το ϱολόι δείχνει 6, που είναι το
υπόλοιπο της διαίρεσης του 18 µε το 12, και όταν ένα αυτοκίνητο έχει διανύσει
συνολικά 245.000 Km, ο χιλιοµετρικός δείκτης δείχνει 45.000 Km, που είναι το
υπόλοιπο της διαίρεσης του 245.000 µε το 100.000.
Ερώτηση: Μήπως µπορείτε να ϐρείτε τί µέρα ϑα είναι η 217η ηµέρα του χρόνου

εαν η πρώτη µέρα ήταν ∆ευτέρα; Ποιό µέτρο (modulo) χρησιµοποιήσατε για να το
ϐρείτε; Μήπως τελικά έχουν πολλές εφαρµογές οι ισοτιµίες στην καθηµερινή µας
Ϲωή;

Παράδειγµα 2.1 Να υπολογίσετε το υπόλοιπο της διαίρεσης του αριθµού A =
13232741 µε το 8.

Λύση:
Είναι

132 = 169 ≡ 9 ≡ 1 (mod 8).

Εποµένως
1323 = 132·11+1 = 13 · (132)11 ≡ 13 ≡ 5 (mod 8).

Επίσης 27 ≡ 3 (mod 8), απ’ όπου 272 ≡ 9 ≡ 1 (mod 8). Εποµένως

2741 = 272·20+1 = 27 · (272)20 ≡ 27 ≡ 3 (mod 8).

΄Αρα A ≡ 15 ≡ 7 (mod 8) και εποµένως υπάρχει a ∈ Z τέτοιο, ώστε A = 8a + 7.
Συνεπώς το Ϲητούµενο υπόλοιπο είναι ο αριθµός 7.

2

Παράδειγµα 2.2 Να δείξετε ότι 22225555 + 55552222 ≡ 0 (mod 7).

Απόδειξη :
Ισχύει 2222 ≡ 3 (mod 7) και 5555 ≡ 4 (mod 7).

΄Αρα 22225555 + 55552222 ≡ 35555 + 42222 (mod 7).

Επίσης
35555 = (35)1111 = (−2)1111 = −21111 (mod 7)

και
42222 = (42)1111 ≡ 21111 (mod 7)

και προσθέτωντας τις τελευταίες, παίρνουµε αυτό που ϑέλουµε.
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2

Παράδειγµα 2.3 Αν λ ∈ N, να αποδειχθεί ότι ο αριθµός A = 4
√

5λ+ 3 είναι άρρη-
τος.

Απόδειξη :
΄Εστω a τυχαίος ακέραιος. Τότε όπως είναι γνωστό a ≡ 0, 1, 2, 3, 4 (mod 5) άρα

a2 ≡ 0, 1, 4 (mod 5) και τελικά a4 ≡ 0, 1 (mod 5).

Επειδή 5λ + 3 ≡ 3 (mod 5), συµπεραίνουµε ότι ο 5λ + 3 δεν έχει τη µορφή a4 µε
a ∈ Z. ΄Αρα ο A είναι άρρητος. (Είναι A4 = 5λ+ 3 ≡ 3 (mod 5), άτοπο).

΄Ασκηση: (Μολδαβία 1997) Να αποδείξετε ότι ο αριθµός a =
√

5n2 + 10 είναι
άρρητος για κάθε n ∈ Z.

2

Παράδειγµα 2.4 (Βουλγαρία) Να αποδείξετε ότι ο 121 δεν διαιρεί τον αριθµό n2 +
3n+ 5 για κάθε τιµή του n ∈ Z.

Απόδειξη :
Ας υποθέσουµε ότι 121|n2+3n+5. Τότε 11|n2+3n+5. ΄Ετσι n2+3n+5 ≡ 0 ≡ 33

(mod 11). ΄Αρα n2 + 3n − 28 ≡ 0 (mod 11) ⇔ 11|(n − 4)(n + 7) ⇔ 11|n − 4 ή
11|n+ 7⇔ (n = 11k+ 4 ή n = 11k−7) και αντικαθιστώντας το n στο n2 + 3n+ 5,
το τελευταίο παίρνει τη µορφή 121λ+ υ µε 0 < υ < 121 το οποίο είναι άτοπο.

2

Παράδειγµα 2.5 (ΕΜΕ 1997) ΄Εστω a, b, c ακέραιοι αριθµοί τέτοιοι, ώστε

(a− b)(b− c)(c− a) = a+ b+ c.

Να αποδείξετε ότι ο αριθµός a+ b+ c διαιρείται µε το 27.

Απόδειξη :
Προφανώς για τους a, b, c ισχύει ότι a, b, c ≡ 0,±1 (mod 3). Εαν και οι τρεις

αφήνουν διαφορετικό υπόλοιπο στη διαίρεσή τους µε το 3, τότε a + b + c ≡ −1 +
0 + 1 = 0 (mod 3) ενώ (a− b)(b− c)(c− a) 6≡ 0 (mod 3). Εαν ακριβώς δύο είναι
ισουπόλοιποι, χωρίς ϐλάβη της γενικότητος έστω οι a, b τότε a − b ≡ 0 (mod 3)
άρα (a − b)(b − c)(c − a) ≡ 0 (mod 3) ενώ a + b + c 6≡ 0 (mod 3). Συνεπώς οι
a, b, c είναι ισουπόλοιποι mod3. Τότε a − b ≡ b − c ≡ c − a ≡ 0 (mod 3), άρα
(a− b)(b− c)(c− a) ≡ 0 (mod 27). ΄Οµως (a− b)(b− c)(c− a) = a+ b+ c άρα η
προηγούµενη ισότητα δίνει a+ b+ c ≡ 0 (mod 27) που είναι και το Ϲητούµενο.

2

Παράδειγµα 2.6 (Ευκλείδης 1995) Να προσδιορίσετε τους πρώτους αριθµούς p, q
για τους οποίους ο αριθµός pp+1 + qq+1 είναι πρώτος.

Λύση:
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Εαν p, q και οι δύο άρτιοι ή και οι δύο περιττοί, τότε ο αριθµός pp+1 + qq+1 είναι
άρτιος > 2 άρα όχι πρώτος. ΄Αρα ο ένας είναι το 2 και ο άλλος είναι περιττός. ΄Αρα
χωρίς ϐλάβη της γενικότητος µπορούµε να υποθέσουµε ότι p = 2 και q ≡ 0, 1,−1
(mod 3) και περιττός. Εαν q ≡ 1 (mod 3), τότε pp+1 + qq+1 ≡ 8 + 1 ≡ 0 (mod 3),
άτοπο. Εαν q ≡ −1 (mod 3), τότε pp+1 + qq+1 ≡ 8 + 1 ≡ 0 (mod 3) (διότι q περιττός
άρα q + 1 άρτιος), άτοπο. Τέλος, εαν q ≡ 0 (mod 3) τότε επειδή ο q είναι πρώτος
άρα q = 3 κι έτσι pp+1 + qq+1 = 89 που είναι πρώτος. ΄Αρα η µοναδική δεκτή λύση
είναι p = 2, q = 3 (ή p = 3, q = 2).

2

Παράδειγµα 2.7 (Αρχιµήδης 1994) Για ποιές τιµές του λ έχει το πολυώνυµο x3 +
1995x2 − 1994x+ λ και τις τρεις ϱίζες ακέραιες;

Λύση:
΄Εστω ότι το πολυώνυµο έχει τρεις ϱίζες ακέραιες τις ρ1, ρ2, ρ3. Τότε από τους

τύπους V ieta έχουµε

A = ρ1 + ρ2 + ρ3 = −1995 ≡ 0 (mod 3) (1)

και
B = ρ1ρ2 + ρ2ρ3 + ρ3ρ1 = −1994 ≡ 1 (mod 3).

Λόγω της (1) έχουµε :

ρ1, ρ2, ρ3 ≡ 0 (mod 3) ή ρ1, ρ2, ρ3 ≡ 1 (mod 3) ή ρ1, ρ2, ρ3 ≡ −1 (mod 3) ή
ρ1 ≡ 0 (mod 3), ρ2 ≡ 1 (mod 3), ρ3 ≡ −1 (mod 3) (Οι υπόλοιπες περιπτώσεις
είναι ισοδύναµες). Οπότε τοB ϑα είναιB ≡ 0 (mod 3) ήB ≡ −1 (mod 3), αδύνατο
αφού B ≡ 1 (mod 3). ΄Αρα δεν υπάρχει λ έτσι ώστε το πολυώνυµο να έχει τρεις
ϱίζες ακέραιες.

2

Βασική Παρατήρηση - Τελευταίο Ψηφίο Αριθµού: ΄Εαν a ≡ υ (mod 10n)
και 0 ≤ υ < 10n, τότε τα τελευταία n ψηφία του αριθµού a είναι το υ µε τόσα
µηδενικά στην αρχή, όσα χρειάζονται ώστε το µήκος του αριθµού υ να είναι ίσο
µε n. Για παράδειγµα, επειδή 992007 + 3 ≡ (−1)2007 + 3 = 2 (mod 102), άρα ο
αριθµός 992007 + 3 τελειώνει σε 02.

2

Παράδειγµα 2.8 (ΕΜΕ 1988) Να ϐρεθούν τα δύο τελευταία ψηφία του αριθµού 270.

Λύση:
Τί κάνουµε για να ϐρούµε για παράδειγµα το 224 από το 223; Πολλαπλασιάζουµε

το 223 επί 2. Και αφού µας ενδιαφέρουν µόνο τα δύο τελευταία ψηφία πολλαπλα-
σιάζουµε το 2 µε αυτά και αν προκύψουν περισσότερα κρατάµε µόνο τα δύο. ΄Ετσι,
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υψώνοντας διαδοχικά και κρατώντας µόνο τα δύο τελευταία ψηφία, παίρνουµε την
εξής ακολουθία τελευταίων ψηφίων.

02, [04, 08, 16, 32, 64, 28, 56, 12, 24, 48, 96, 92, 84, 68, 36, 72, 44, 88, 76, 52]︸ ︷︷ ︸
επανάληψη ανά 20

,

04, 08, 26, 32 . . .

Παρατηρούµε λοιπόν ότι τα δύο τελευταία ψηφία ξαναεµφανίζονται µε περίοδο 20.
Γράφοντας

270 = (220)3 · 210,

συµπεραίνουµε ότι τα δύο τελευταία ψηφία του 270 ϑα είναι τα ίδια µε εκείνα του 210,
άρα το 24.

Παρατήρηση: Για (κάποιου είδους) επαλήθευση µπορούµε να ϐρούµε το τελευταίο
ψηφίο του ίδιου αριθµού χρησιµοποιώντας την περιοδικότητα του τελευταίου ψηφίου
που είναι 4, [2, 4, 8, 6], 2, 4, . . . και έτσι

270 = (24)17 · 22.

Το τελευταίο ψηφίο του 270 ϑα είναι το ίδιο µε εκείνο του 22 δηλαδή το 4.

2

΄Ασκηση: (Αρχιµήδης 1989) Να ϐρεθούν τα δύο τελευταία ψηφία του αριθµού
61989.

Παράδειγµα 2.9 (Ολυµπιάδα Καναδά) Να ϐρεθεί το τελευταίο ψηφίο του αριθµού

777
7.
..
7

︸ ︷︷ ︸
1001 7−άρια

Λύση:
Αρχικά παρατηρούµε ότι 74 ≡ 1 (mod 10). Επίσης, αφού

72k ≡ 1 (mod 4) και 72k+1 ≡ 3 (mod 4)

άρα

a := 777
7.
..
7

︸ ︷︷ ︸
1000 7−άρια

≡ 3 (mod 4) συνεπώς a = 3k + 4, k ∈ Z.

΄Ετσι,

777
7.
..
7

︸ ︷︷ ︸
1001 7−άρια

= 7a = 74k+3 = 73 · (74)k ≡ 73 ≡ 3 (mod 10).

2
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Παράδειγµα 2.10 (ΕΜΕ 1994) Να αποδείξετε ότι υπάρχουν ϕυσικοί αριθµοί που τα
4 τελευταία ψηφία τους είναι 1994 και διαιρούνται µε το 1993.

Απόδειξη :
Ο αριθµός αυτός είναι της µορφής

anan−1an−2 . . . a4︸ ︷︷ ︸
A

1994 = 10000A+ 1994 = A(5 · 1993 + 35) + 1993 + 1

≡ 35 · A+ 1 (mod 1993)

Για να είναι 35 ·A+1 ≡ 0 (mod 1993) ϑα πρέπει 35A+1 = 1993k, k ∈ Z δηλαδή

A = 57k − 2k + 1

35
(1) δηλαδή πρέπει το 2k + 1 να είναι πολλαπλάσιο του 35. Για

k = 17 έχουµε A = 968. Ο αριθµός λοιπόν 9681994 είναι πολλαπλάσιο του 1993.
Υπάρχουν άπειροι τέτοιοι αριθµοί αφού η (1) έχει άπειρες λύσεις.

2

Παράδειγµα 2.11 Να αποδείξετε ότι για κάθε n ∈ N ισχύει

17|34n+2 + 2 · 43n+1.

Απόδειξη :
΄Εχουµε 34 = 81 ≡ 13 (mod 17). Εποµένως

34n+2 = 9 · 81n ≡ 9 · 13n (mod 17).

Επίσης 43 = 64 ≡ 13 (mod 17), οπότε 43n+1 = 4 · (43)n ≡ 4 · 13n (mod 17). ΄Αρα

34n+2 + 2 · 43n+1 ≡ 9 · 13n + 8 · 13n = 17 · 13n ≡ 0 (mod 17).

Παρατήρηση: Το παραπάνω πρόβληµα µπορεί να επιλυθεί και µε τη µέθοδο της
µαθηµατικής επαγωγής.

2

Παράδειγµα 2.12 (Βαλκανιάδα 1990) Εαν an ακολουθία µε a1 = 1, a2 = 3 και
an+2 = (n+ 3)an+1 − (n+ 2)an, να ϐρεθούν τα n για τα οποία 11|an.

Λύση:

an+2 − an+1 = (n+ 2)(an+1 − an)

an+1 − an = (n+ 1)(an − an−1)
...

a3 − a2 = 3(a2 − a1)
a2 − a1 = 2
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Με πολλαπλασιασµό κατά µέλη των παραπάνω ισοτήτων προκύπτει ότι

an+2 − an+1 = (n+ 2)!

Αφού a1 = 1, a2 = 3, a3 = 9 άρα ο 11 δεν τους διαιρεί. Επίσης a4 = 33 άρα 11|a4.
a5 = a4 + 5! και 11 6 | 5! άρα 11 6 | a5. Οµοίως 11 6 | a6 και 11 6 | a7.

a8 = a4 + 5! + 6! + 7! + 8! = a4 + 5!(1 + 6 + 6 · 7 + 6 · 7 · 8)

= a4 + 5!(7 · 7 + 6 · 7 · 8) = a4 + 5!7 · 55,

άρα 11|a8. Πολύ εύκολα παίρνουµε 11 6 | a9 ενώ 11|a10 αφού

a10 = a8 + 9! + 10! = a8 + 9!(1 + 10).

a11 = a10 + 11!, άρα 11|a11.

Για κάθε n ∈ N µε n ≥ 11 ισχύει 11|n! συνεπώς 11|an αφού

an = a10 + 11! + 12! + · · ·+ n!

Τελικά, 11|an εαν n = 4, n = 8 και n ≥ 10.

2

Θα συµπληρώσουµε την Πρόταση 1.10 µε µερικές ακόµη ϐασικές προτάσεις
γραµµένες µε ισοτιµίες

Πρόταση 2.3 (Βασική Πρόταση)

(i) Αν ο p 6= 3 είναι πρώτος τότε p2 ≡ 1 (mod 3).

(ii) Αν ο p 6= 2 είναι πρώτος τότε p2 ≡ 1 (mod 8).

(iii) Αν ο p > 3 είναι πρώτος τότε p2 ≡ 1 (mod 12).

(iv) Για κάθε πρώτο p > 3 ισχύει ότι p ≡ ±1 (mod 6) (Αναδιατύπωση της Πρότασης
1.10).

2.2 Συστήµατα υπολοίπων

Ορισµός 2.2 ΄Ενα σύνολο n ακεραίων a1, . . . , an καλείται πλήρες σύστηµα υπο-
λοίπων modn, εαν κάθε ένα από τα a1, . . . , an είναι ισοϋπόλοιπο µε ένα και µόνο
αριθµό του συνόλου {0, 1, . . . , n− 1} 5.

5∆ηλαδή τα a1, . . . , an ϑα µπορούσαµε να τα ϑεωρήσουµε ως τα δυνατά υπόλοιπα της διαίρεσης
ενός ακεραίου µε το n αντί των {0, 1, . . . , n− 1}.
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Μερικά συστήµατα υπολοίπων modn που µπορούµε να διακρίνουµε αµέσως
είναι τα εξής :

(i) Ελάχιστο µη αρνητικό σύστηµα υπολοίπων modn: {0, 1, . . . , n− 1}.

(ii) Ελάχιστο ϑετικό σύστηµα υπολοίπων modn: {1, . . . , n}

(iii) Πλήρες σύστηµα των απόλυτα ελαχίστων υπολοίπων modn:

• Για n περιττό είναι το σύνολο{
−n− 1

2
, . . . ,−1, 0, 1, . . . ,

n− 1

2

}
• και για n άρτιο, το σύνολο{

−
(n

2
− 1
)
, . . . ,−1, 0, 1, . . . ,

n

2

}
Παράδειγµα 2.13 Το σύνολο S = {14, 24, 9,−11, 34, 68,−21, 87} είναι ένα πλή-
ϱες σύστηµα υπολοίπων mod8. Πραγµατικά, έχουµε

14 ≡ 6 (mod 8), 24 ≡ 0 (mod 8), 9 ≡ 1 (mod 8), −11 ≡ 5 (mod 8),

34 ≡ 2 (mod 8), 68 ≡ 4 (mod 8), −21 ≡ 3 (mod 8), 87 ≡ 7 (mod 8).

Καθώς το σύνολο {0, 1, . . . , 7} είναι ένα πλήρες σύστηµα υπολοίπων mod8 άρα το
σύνολο S είναι επίσης ένα πλήρες σύστηµα υπολοίπων mod8.

2

Παράδειγµα 2.14 Το σύνολο T = {1, 22, 32, . . . , n2} δεν είναι πλήρες σύστηµα
υπολοίπων modn.

Απόδειξη :
Καθώς (n − 1)2 − 1 = n2 − 2n, έχουµε (n − 1)2 ≡ 1 (mod n) και εποµένως δύο

διαφορετικά στοιχεία του συνόλου T (τα (n− 1)2 και το 1) είναι ισουπόλοιπα µε το
ίδιο στοιχείο του συνόλου {0, 1, . . . , n} (µε το 1).

2

Παράδειγµα 2.15 (ΕΜΕ 1990) Να αναλυθεί σε γινόµενο η παράσταση a7 − a. Αν
ο a είναι ϕυσικός αριθµός, η παράσταση αυτή είναι πάντοτε διαιρετή µε το 42.

Απόδειξη :
a7− a = a(a6− 1) = a(a3− 1)(a3 + 1) = a(a− 1)(a+ 1)(a2 + a+ 1)(a2− a+ 1).

Εαν a ϕυσικός τότε a, a + 1 διαδοχικοί ϕυσικοί άρα ο ένας είναι πολλαπλάσιο του
2. Επίσης a − 1, a, a + 1 τρεις διαδοχικοί ϕυσικοί άρα ο ένας είναι πολλαπλάσιο
του 3 και επειδή (2, 3) = 1 έχουµε 6|a(a − 1)(a + 1). Επίσης (6, 7) = 1 άρα αρκεί
να δείξουµε ότι η παράσταση είναι διαιρετή από το 7. ∆ιακρίνουµε περιπτώσεις για
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το a. Εαν a = 7k, τότε ϕανερά το γινόµενο είναι πολλαπλάσιο του 7. ΄Οµοια εαν
a = 7k + 1, 7k − 1 τότε 7|a− 1, 7|a+ 1 αντίστοιχα, άρα διαιρεί όλη την παράσταση.
Εαν a = 7k+2 ή a = 7k−3 τότε ο a2 +a+1 είναι πολλαπλάσιο του 7 και τέλος εαν
a = 7k + 3 ή a = 7k − 2 ο a2 − a+ 1 είναι πολλαπλάσιο του 7. (Να υπενθυµίσουµε
ότι το σύνολο {−3,−2,−1, 0, 1, 2, 3} είναι ένα πλήρες σύστηµα υπολοίπων mod7).

2

Πρόταση 2.4 ΄Εστω {x0, x1, . . . , xn−1} ένα πλήρες σύστηµα υπολοίπων modn και
a, b ∈ Z µε (a, n) = 1. Τότε το σύνολο {ax0 + b, . . . , axn−1 + b} αποτελεί ένα πλήρες
σύστηµα υπολοίπων modn.
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2.3 Θεώρηµα Wilson - Θεωρήµατα Fermat και Euler

Το παρακάτω Θεώρηµα δίνει µία ικανή και αναγκαία συνθήκη για να είναι ένας
ϕυσικός p πρώτος.

Θεώρηµα 2.2 (Θεώρηµα του Wilson) ΄Ενας ακέραιος p > 1 είναι πρώτος, αν και
µόνο αν, ισχύει

(p− 1)! ≡ −1 (mod p).

Πόρισµα 2.3 Για κάθε πρώτο αριθµό p ισχύει

(p− 2)! ≡ 1 (mod p).

Παράδειγµα 2.16 Εαν 0 < s < p, όπου p πρώτος αριθµός, να αποδειχθεί ότι ισχύει

(s− 1)!(p− s)! + (−1)s−1 ≡ 0 (mod p).

Απόδειξη :
Για s = 1 η Πρόταση είναι αληθής λόγω του ϑεωρήµατος Wilson. Υποθέτουµε ότι

ισχύει
(s− 2)!(p− (s− 1))! + (−1)s−2 ≡ 0 (mod p)

οπότε

(s− 2)!(p− s+ 1)! + (−1)s−2 ≡ 0 (mod p)

⇒ (s− 2)!(p− s)!(p− s+ 1) + (−1)s−2 ≡ 0 (mod p)

⇒ (s− 2)!(p− s)!p− (s− 2)!(p− s)!(s− 1) + (−1)s−2 ≡ 0 (mod p)

⇒ −(s− 2)!(s− 1)(p− s)! + (−1)s−2 ≡ 0 (mod p)

⇒ (s− 1)!(p− s)!− (−1)s−2 ≡ 0 (mod p)

⇒ (s− 1)!(p− s)! + (−1)s−1 ≡ 0 (mod p)

άρα η Πρόταση ισχύει για κάθε s µε 0 < s < p.

Παρατήρηση: Η Πρόταση ισχύει και για s = p. Πράγµατι,

(p− 1)!0! + (−1)p−1 = (p− 1)! + 1 ≡ 0 (mod p).

2

Πρόταση 2.5 ΄Εστω p ένας περιττός πρώτος. Τότε[(
p− 1

2

)
!

]2
=

{
−1 (mod p),αν p ≡ 1 (mod 4)
1 (mod p),αν p ≡ 3 (mod 4)
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Παράδειγµα 2.17 ΄Εστω p πρώτος > 2. Να δείξετε ότι

(p− 1)! ≡ p− 1 (mod 1 + 2 + · · ·+ (p− 1)).

Απόδειξη :

Καθώς 1 + 2 + · · ·+ (p− 1) =
p(p− 1)

2
, αρκεί να δείξουµε ότι

p(p− 1)

2
|(p− 1)!− (p− 1).

Από το Θεώρηµα Wilson, έχουµε (p− 1)! ≡ −1 (mod p), απ’ όπου p|(p− 1)! + 1 και
εποµένως p|(p − 1)! − (p − 1). Επίσης, (p − 1)! − (p − 1) = (p − 1) ((p− 2)!− 1),
απ’ όπου p− 1|(p− 1)!− (p− 1). Επειδή (p, p− 1) = 1 παίρνουµε

p(p− 1)|(p− 1)!− (p− 1).

Καθώς ο πρώτος p είναι περιττός, έπεται ότι ο αριθµός (p − 1)/2 είναι ακέραιος και
κατά συνέπεια ισχύει

p(p− 1)

2
|(p− 1)!− (p− 1).

2

Από τα σπουδαιότερα ϑεωρήµατα της στοιχειώδους Θεωρίας Αριθµών είναι το
ακόλουθο, που είναι γνωστό ως Μικρό Θεώρηµα του Fermat

Θεώρηµα 2.3 (Θεώρηµα Fermat) ΄Εστω p ένας πρώτος και a ένας ακέραιος µε
p 6 | a. Τότε

ap−1 ≡ 1 (mod p).

Πόρισµα 2.4 ΄Εστω p ένας πρώτος. Τότε για κάθε a ∈ Z ισχύει

ap ≡ a (mod p).

Πρόταση 2.6 Εαν p είναι ένας πρώτος αριθµός και a1, . . . , an ακέραιοι αριθµοί,
τότε ισχύει

(a1 + · · ·+ an)p ≡ ap1 + · · ·+ apn (mod p).

Παράδειγµα 2.18 Εαν για το ϕυσικό αριθµό n ισχύει

5 6 | n− 1, 5 6 | n, 5 6 | n+ 1,

να αποδειχθεί ότι 5|n2 + 1.

Απόδειξη :
Επειδή 5 6 | n, απ’ το Μικρό Θεώρηµα του Fermat, ισχύει

n4 ≡ 1 (mod 5)⇒ (n− 1)(n+ 1)(n2 + 1) ≡ 0 (mod 5)

οπότε, επειδή 5 6 | n− 1, 5 6 | n+ 1 έχουµε το Ϲητούµενο.

32



Εισαγωγή στη Θεωρία Αριθµών 2 Ισοτιµίες

2

Η ακόλουθη γενίκευση του (µικρού) ϑεωρήµατος του Fermat είναι γνωστό ως
Θεώρηµα Euler.

Θεώρηµα 2.4 (Θεώρηµα Euler) ΄Εστω n ένας ϕυσικός > 1 και a ένας ακέραιος
τέτοιος, ώστε (a, n) = 1. Τότε

aφ(n) ≡ 1 (mod n).

Παράδειγµα 2.19 Να υπολογίσετε το υπόλοιπο της διαίρεσης του 106k+4, όπου k ∈
N, µε το 7.

Λύση:
Καθώς (10, 7) = 1, το Θεώρηµα Fermat δίνει 106 ≡ 1 (mod 7), απ’ όπου 106k ≡ 1

(mod 7). Επίσης
104 ≡ 34 = 92 ≡ 22 = 4 (mod 7).

΄Αρα
106k+4 ≡ 4 (mod 7)

και εποµένως το Ϲητούµενο υπόλοιπο είναι το 4.

2

Παράδειγµα 2.20 Να δείξετε ότι ο αριθµός
7 · 19681968 − 3 · 6878

10
είναι ακέραιος.

Απόδειξη :
Αρκεί να δείξουµε ότι

10|7 · 19681968 − 3 · 6878.

Το Θεώρηµα του Fermat δίνει 34 ≡ 1 (mod 5). Εποµένως

19681968 ≡ 31968 =
(
34
)492 ≡ 1 (mod 5).

Επίσης, έχουµε

6878 ≡ 378 = 9 ·
(
34
)19 ≡ 9 ≡ 4 (mod 5),

οπότε
7 · 19681968 − 3 · 6878 ≡ 7− 3 · 4 = −5 ≡ 0 (mod 5).

∆ηλαδή
5|7 · 19681968 − 3 · 6878.

Καθώς ο ακέραιος 7 · 19681968 − 3 · 6878 είναι άρτιος και (2, 5) = 1 παίρνουµε

10|7 · 19681968 − 3 · 6878.
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2

Παράδειγµα 2.21 Να δείξετε ότι για κάθε ακέραιο n ισχύει

2730|n13 − n.

Απόδειξη :
Η πρωτογενής ανάλυση του 2730 είναι 2730 = 2 · 3 · 5 · 7 · 13. Καθώς οι ακέραιοι

2, 3, 5, 7, 13 είναι πρώτοι µεταξύ τους ανά δύο αρκεί να δείξουµε ότι καθένας απ’
αυτούς διαιρεί τον n13 − n.

Παρατηρούµε ότι αν ο n είναι άρτιος τότε και ο n13− n είναι άρτιος. Επίσης, εαν ο
n είναι περιττός, τότε ο n13 − n είναι άρτιος. ΄Αρα για κάθε n ∈ Z ισχύει 2|n13 − n.
Από το Πόρισµα (2.4) έχουµε ότι για κάθε n ∈ Z ισχύουν

n3 ≡ n (mod 3), n5 ≡ n (mod 5), n7 ≡ n (mod 7), n13 ≡ n (mod 13).

΄Αρα

n13 ≡ n ·
(
n3
)4 ≡ n · n4 = n3 · n2 ≡ n3 ≡ n (mod 3)

n13 ≡ n3 ·
(
n5
)2 ≡ n3 · n2 = n5 ≡ n (mod 5)

n13 ≡ n6 · n7 ≡ n6 · n = n7 ≡ n (mod 7)

οπότε
3|n13 − n, 5|n13 − n, 7|n13 − n, 13|n13 − n.

2

Παράδειγµα 2.22 ΄Εστω p πρώτος. Να αποδείξετε ότι p|abp − bap για όλους τους
ακεραίους a, b.

Απόδειξη :
Ας σηµειώσουµε αρχικά ότι abp − bap = ab(bp−1 − ap−1).
Εαν p|ab τότε p|abp − bap, ενώ εαν p 6 | ab τότε (p, a) = (p, b) = 1 συνεπώς από το

Μικρό Θεώρηµα του Fermat έχουµε bp−1 ≡ ap−1 ≡ 1 (mod p). ΄Αρα p|bp−1 − ap−1
που δίνει ότι p|abp − bap και έτσι σε κάθε περίπτωση p|abp − bap.

2

Παράδειγµα 2.23 (Εσωτερικός ∆ιαγωνισµός Ε.Μ.Ε. 1995) Εαν p πρώτος αριθµός
µε p > 3, να αποδείξετε ότι 20p|5p − 4p − 1.

Απόδειξη :
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Εαν p = 5 τότε το αποτέλεσµα ισχύει. ΄Εστω λοιπόν p ≥ 7. Τότε 5p − 4p − 1 ≡
0− (−1)p − 1 = 0 (mod 5)
5p − 4p − 1 ≡ 1p − 0− 1 = 0 (mod 4)
και τέλος, λόγω του Πορίσµατος 2.4, παίρνουµε 5p ≡ 5 (mod p) και 4p ≡ 4 (mod p)
άρα 5p − 4p − 1 ≡ 5 − 4 − 1 = 0 (mod p) και επειδή (4, 5, p) = 1 παίρνουµε ότι
20p|5p − 4p − 1.

΄Ασκηση: (2ος Εσωτερικός διαγωνισµός Ε.Μ.Ε. 1989) Εαν p πρώτος να αποδείξετε
ότι 42p|3p − 2p − 1. (Υπόδειξη : Για να δείξετε ότι 7|3p − 2p − 1, χρησιµοποιήστε την
Πρόταση 1.10).

2

Παράδειγµα 2.24 ΄Εστω p ≥ 7 ένας πρώτος. Να αποδείξετε ότι ο αριθµός

11 . . . 1︸ ︷︷ ︸
p−1 µονάδες

διαιρείται από το p.

Απόδειξη :
΄Εχουµε

11 . . . 1︸ ︷︷ ︸
p−1 µονάδες

=
10p−1 − 1

9

και το συµπέρασµα προκύπτει από το Μικρό Θεώρηµα του Fermat 6.

2

Παράδειγµα 2.25 ΄Εστω p ένας πρώτος µε p > 5. Να αποδείξετε ότι p8 ≡ 1
(mod 240).

Απόδειξη :
Η πρωτογενής ανάλυση του 240 είναι 240 = 24 · 3 · 5. Από το Μικρό Θεώρηµα του

Fermat, έχουµε p2 ≡ 1 (mod 3) και p4 ≡ 1 (mod 5). Επειδή ένας ϑετικός ακέραιος
είναι πρώτος προς το 24 αν και µόνο αν είναι περιττός φ(24) = 23 και έτσι λόγω
του ϑεωρήµατος Euler, έχουµε p8 ≡ 1 (mod 16). Συνεπώς p8 ≡ 1 (mod m) για
m = 3, 5, 16 των οποίων το Ε.Κ.Π. είναι το 240 και έτσι p8 ≡ 1 (mod 240).

Παρατήρηση: ∆εν είναι δύσκολο να δούµε ότι n4 ≡ 1 (mod 16) για n ≡ ±1,±3,±5,±7
(mod 16). Συνεπώς µπορούµε να ϐελτιώσουµε το αποτέλεσµα της άσκησης σε p4 ≡ 1
(mod 240) για όλους τους πρώτους p > 5.

2

6Ας σηµειωθεί ότι (10, p) = 1
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Παράδειγµα 2.26 Να αποδείξετε ότι για κάθε άρτιο ϑετικό ακέραιο n ισχύει

n2 − 1|2n! − 1.

Απόδειξη :
Θέτουµε m = n + 1. Θέλουµε τότε να δείξουµε ότι m(m − 2)|2(m−1)! − 1. Επειδή

φ(m)|(m− 1)!, έχουµε 2φ(m) − 1|2(m−1)! − 1 και από το Θεώρηµα του Euler έχουµε
m|2φ(m)−1. ΄Ετσι, προκύπτει ότιm|2(m−1)!−1. ΄Οµοια,m−2|2(m−1)!−1 και επειδή
ο m είναι περιττός, παίρνουµε (m,m− 2) = 1 άρα το Ϲητούµενο αποτέλεσµα.

2

Παράδειγµα 2.27 ΄Εστω p ένας πρώτος της µορφής 3k+2 που διαιρεί το a2+ab+b2

για κάποιους ακεραίους a, b. Αποδείξτε ότι οι a, b είναι και οι δύο διαιρετοί από το p.

Απόδειξη :
Ας υποθέσουµε ότι ο p δεν διαιρεί το a. Επειδή p|a2 + ab + b2, άρα ο p διαιρεί και

το a3 − b3 = (a− b)(a2 + ab+ b2) συνεπώς a3 ≡ b3 (mod p). ΄Αρα

a3k ≡ b3k (mod p) (1)

Συνεπώς ο p δεν διαιρεί ούτε το b. Από το Μικρό Θεώρηµα του Fermat έχουµε
ap−1 ≡ bp−1 ≡ 1 (mod p), ή

a3k+1 ≡ b3k+1 (mod p) (2)

Επειδή ο p είναι πρώτος προς το a, και λόγω των (1), (2) παίρνουµε a ≡ b (mod p).
Το τελευταίο σε συνδυασµό µε το a2 + ab + b2 ≡ 0 (mod p) δίνει 3a2 ≡ 0 (mod p).
΄Ετσι, αφού p 6= 3 άρα p|a, άτοπο.

2

Με όµοιο τρόπο όπως την παραπάνω να λύσετε την επόµενη, ϑέµα της 3ης Προ-
καταρτικής Φάσης της 13ης Εθνικής Μαθηµατικής Ολυµπιάδας του 1996.
΄Ασκηση: ΄Εστω p πρώτος αριθµός της µορφής 4k + 3 (k ∈ N). Εαν x, y ∈ Z και

p|x2 + y2, να αποδείξετε ότι p|x και p|y.

2

Παράδειγµα 2.28 (∆ιεθνής Ολυµπιάδα Μαθηµατικών 2005) Θεωρούµε την ακο-
λουθία a1, a2, . . . που ορίζεται µε τον τύπο

an = 2n + 3n + 6n − 1

για όλους τους ϑετικούς ακεραίους n. Να ϐρείτε όλους τους ϑετικούς ακέραιους που
είναι πρώτοι προς όλους τους όρους της ακολουθίας.
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Λύση:
Η απάντηση είναι µόνο το 1. Αρκεί να δείξουµε ότι κάθε πρώτος p διαιρεί το an για

κάποιο ϑετικό ακέραιο n. Ας σηµειωθεί ότι οι p = 2 και p = 3 διαιρούν τον a2 = 48.

Ας υποθέσουµε τώρα ότι p ≥ 5. Τότε από το Μικρό Θεώρηµα του Fermat έχουµε
2p−1 ≡ 3p−1 ≡ 6p−1 ≡ 1 (mod p). Τότε

3 · 2p−1 + 2 · 3p−1 + 6p−1 ≡ 3 + 2 + 1 ≡ 0 (mod 6)

δηλαδή 6(2p−2 + 3p−2 + 6p−2− 1) ≡ 0 (mod p), δηλαδή p|6ap−2. Επειδή (p, 6) = 1,
άρα ο ap−2 διαιρείται από το p όπως το ϑέλαµε.

2
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2.4 Γραµµικές Ισοτιµίες

Ορισµός 2.3 ΄Εστω n ένας ϕυσικός > 1 και a, b δύο ακέραιοι. Μία ισοτιµία της
µορφής

ax ≡ b (mod n),

όπου x προσδιοριστέος ακέραιος, καλείται γραµµική ισοτιµία. Λέµε ότι ο ακέραιος
x0 επαληθεύει ή πληροί την παραπάνω γραµµική ισοτιµία αν

ax0 ≡ b (mod n).

Παρατήρηση: Σε αυτή την περίπτωση, κάθε ακέραιος y µε x0 ≡ y (mod n), επα-
ληθεύει επίσης τη γραµµική ισοτιµία. ΄Ετσι, ϑα καλούµε λύση της ισοτιµίας ax ≡ b
(mod n) οποιονδήποτε ακέραιο y µε x0 ≡ y (mod n) όπου x0 µία οποιαδήποτε λύση
της αρχικής ισοτιµίας ή όπως λέµε ένας αντιπρόσωπος του συνόλου των λύσεων.
Φυσικά, υπάρχουν και ισοτιµίες οι οποίες δεν έχουν καµία λύση. Π.χ. η 6x ≡ 1
(mod 8) (8|6x− 1, άτοπο αφού 6x− 1 περιττός).

Παράδειγµα 2.29 Να προσδιορίσετε τις λύσεις της γραµµικής ισοτιµίας 2x ≡ 10
(mod 6).

Λύση:
Καθώς 10 ≡ 4 (mod 6), η γραµµική ισοτιµία απλουστεύεται και έχουµε 2x ≡ 4

(mod 6). Οι ακέραιοι 0, 1, 2, 3, 4, 5 αποτελούν ένα πλήρες σύστηµα υπολοίπων
mod6 κι έτσι παρατηρούµε τα εξής :

2 · 0 = 0 6≡ 4 (mod 6), 2 · 1 = 2 6≡ 4 (mod 6), 2 · 2 ≡ 4 (mod 6)

2 · 3 = 6 6≡ 4 (mod 6), 2 · 4 = 8 6≡ 4 (mod 6), 2 · 5 = 10 ≡ 4 (mod 6).

Εποµένως οι λύσεις είναι οι x ≡ 2, 5 (mod 6).

Παρατήρηση: Παρατηρούµε ότι η µέθοδος αυτή που χρησιµοποιήσαµε στο παρα-
πάνω παράδειγµα δεν είναι εύκολο να εφαρµοστεί για τον προσδιορισµό των λύσεων
µιας γραµµικής ισοτιµίας µε µεγάλο n διότι οι υπολογισµοί γίνονται αρκετά επίπονοι.
Αυτός είναι και ο λόγος που ϑα µελετήσουµε αναλυτικότερα τις γραµµικές ισοτιµίες.

Ορισµός 2.4 Ονοµάζουµε αντίστροφο ενός αριθµού a modn (αν υπάρχει) εκείνον
τον ακέραιο b για τον οποίο ισχύει ab ≡ 1 (mod n). Τον συµβολίζουµε µε a−1 ή µε
1
a
.

Για παράδειγµα ο αντίστροφος του 3 mod7 είναι το 5 διότι 3 · 5 ≡ 1 (mod 7).

Πρόταση 2.7 ΄Εστω a ∈ Z µε a 6= 0. Τότε υπάρχει το αντίστροφο του a, αν και
µόνο αν, (a, n) = 1.

Πρόταση 2.8 ΄Εστω (a, n) = 1. Τότε η γραµµική ισοτιµία ax ≡ b (mod n) έχει
ακριβώς µία λύση.
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Παράδειγµα 2.30 Να υπολογίσετε τις λύσεις της γραµµικής ισοτιµίας 137x ≡ 4
(mod 102)

Λύση:
Καθώς 137 ≡ 35 (mod 102), η γραµµική ισοτιµία απλουστεύεται και έχουµε 35x ≡

4 (mod 102). Με τον αλγόριθµο του Ευκλείδη ϐρίσκουµε ότι (102, 35) = 1 (άρα η
παραπάνω ισοτιµία έχει µοναδική λύση) και συγκεκριµένα ότι −12 ·102+35 ·35 = 1.
Εποµένως 35 · 35 ≡ 1 (mod 102). Συνεπώς ο αντίστροφος του 35 mod102, είναι ο
εαυτός του και έτσι, πολλαπλασιάζοντας και τα δύο µέλη της ισοτιµίας 35x ≡ 4
(mod 102) µε 35, παίρνουµε x ≡ 4 · 35 ≡ 38 (mod 102).

2

Παρατήρηση: Εαν (a, n) = 1 τότε για να προσδιορίσουµε τον αντίστροφο του a
modn µπορούµε να δουλέψουµε και ως εξής : ΄Εστω r ένας ϑετικός ακέραιος έτσι
ώστε ar ≡ 1 (mod n) (π.χ. r = φ(n)). Τότε το αντίστροφο του a modn, είναι το
ar−1 modn. Συνεπώς εαν (a, n) = 1, τότε η λύση της γραµµικής ισοτιµίας ax ≡ b
(mod n) είναι η x ≡ bar−1 (mod n).

Παράδειγµα 2.31 Θα λύσουµε τη γραµµική ισοτιµία 7x ≡ 8 (mod 30).

Λύση:
Καθώς (7, 30) = 1, η γραµµική ισοτιµία έχει µοναδική λύση. ΄Εχουµε 7φ(30) ≡ 1

(mod 30). ΄Οµως φ(30) = 8 άρα η τάξη του 7 mod30 7, διαιρεί το φ(30) = 8.
∆οκιµάζοντας παίρνουµε 72 = 49 ≡ 19 ≡ −11 (mod 30) και 74 ≡ (−11)2 = 121 ≡ 1
(mod 30). ΄Αρα ord30(7) = 4 και έτσι, πολλαπλασιάζοντας και τα δύο µέλη της
γραµµικής ισοτιµίας µε 73 παίρνουµε

x ≡ 738 ≡ (−77)8 ≡ (−17)8 ≡ 13 · 8 = 104 ≡ 14 (mod 30).

2

Θεώρηµα 2.5 Η γραµµική ισοτιµία ax ≡ b (mod n) έχει λύση αν και µόνο αν d|b
όπου d = (a, n). Ειδικώτερα, εαν ο ακέραιος x0 επαληθεύει τη γραµµική ισοτιµία,
τότε υπάρχουν ακριβώς d λύσεις οι

x ≡ x0, x0 +
n

d
, x0 + 2

n

d
, . . . , x0 + (d− 1)

n

d
(mod n)

Παράδειγµα 2.32 Να υπολογίσετε τις λύσεις της γραµµικής ισοτιµίας

21x ≡ 6 (mod 33).

Λύση:

7Εαν (a, n) = 1 τότε τάξη του a modn ονοµάζουµε τον ελάχιστο ακέραιο r για τον οποίο ισχύει
ar ≡ 1 (mod n). Την συµβολίζουµε µε ordn(a) και αποδεικνύεται (πολύ εύκολα) ότι ordn(a)|φ(n).
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΄Εχουµε (21, 33) = 3 και 3|6. Σύµφωνα µε το παραπάνω Θεώρηµα, η ισοτιµία έχει
3 λύσεις. ΄Ενας ακέραιος x επαληθεύει την παραπάνω ισοτιµία αν και µόνο αν 7x ≡
2 (mod 11). Οι ακέραιοι 0,1,. . .,10 αποτελούν ένα πλήρες σύστηµα υπολοίπων
mod11. ∆οκιµάζουµε καθένα από αυτούς στην παραπάνω γραµµική ισοτιµία και
διαπιστώνουµε ότι ο 5 την επαληθεύει. ΄Αρα µοναδική λύση της ισοτιµίας 7x ≡ 2
(mod 11) είναι η x ≡ 5 (mod 11). Ο 5 επαληθεύει και την 21x ≡ 6 (mod 33).
Εποµένως, σύµφωνα µε το παραπάνω Θεώρηµα οι λύσεις της ισοτιµίας 21x ≡ 6
(mod 33) είναι οι x ≡ 5, 16, 27 (mod 33).

2

Παράδειγµα 2.33 Να υπολογίσετε τις λύσεις της ισοτιµίας

2086x ≡ −1624 (mod 1729).

Λύση:
Καθώς 2086 ≡ 357 (mod 1729) και −1624 ≡ 105 (mod 1729), µπορούµε να

απλοποιήσουµε τη γραµµική ισοτιµία και έτσι έχουµε 357x ≡ 105 (mod 1729). Με
τον αλγόριθµο του Ευκλείδη παίρνουµε ότι (357, 1729) = 7 καθώς επίσης ότι 7 =
19 · 1729− 92 · 357. Οπότε −92 · 357 ≡ 7 (mod 1729). Πολλαπλασιάζοντας και τα
δύο µέλη της ισοτιµίας µε 15 παίρνουµε (−92·15)·357 ≡ 105 (mod 1729). Σύµφωνα
µε το παραπάνω Θεώρηµα οι 7 λύσεις της γραµµικής ισοτιµίας είναι οι εξής

x ≡ 349, 596, 843, 1090, 1337, 1584, 102 (mod 1729).

2

2.5 Συστήµατα γραµµικών ισοτιµιών

Ορισµός 2.5 Καλούµε λύση του συστήµατος

a1x ≡ b1 (mod n1)

...

akx ≡ bk (mod nk)

κάθε ακέραιο που επαληθεύει κάθε µία από τις γραµµικές ισοτιµίες. Για παράδειγµα,
µία λύση του συστήµατος 3x ≡ 9 (mod 10), 2x ≡ 1 (mod 5) είναι ο ακέραιος 3.
΄Ενα σύστηµα ενδέχεται να µην έχει λύση, ακόµη και στην περίπτωση, όπου κάθε
µία από τις γραµµικές ισοτιµίες που το αποτελούν έχει λύση. ΄Οταν λέµε ότι ένα
σύστηµα έχει λύση την a modc εννοούµε ότι έχει ως λύσεις όλους τους ακεραίους
που είναι ισοϋπόλοιποι µε το a modc. ∆ύο συστήµατα καλούνται ισοδύναµα όταν
έχουν το ίδιο σύνολο λύσεων.
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Θεώρηµα 2.6 (Κινέζικο Θεώρηµα Υπολοίπων ή Θεώρηµα Υπολοίπων του Νικόµα-
χου) ΄Εστω b1, . . . , bk ακέραιοι και n1, . . . , nk ϕυσικοί > 1, πρώτοι µεταξύ τους ανά
δύο. Τότε το σύστηµα γραµµικών ισοτιµιών

x ≡ b1 (mod n1)

x ≡ b2 (mod n2)

...

x ≡ bk (mod nk)

έχει µοναδική λύση modn1 · · ·nk, την οποία ϐρίσκουµε ως εξής :

Ορίζουµε Nj = n1 · · ·nj−1nj+1 · · ·nk και ϐρίσκουµε την λύση Mj της ισοτιµίας
Njx ≡ 1 (mod nj)

8 (είτε µε τον Ευκλείδειο αλγόριθµο είτε µε απλές δοκιµές εαν οι
αριθµοί είναι µικροί). Τότε η λύση του συστήµατος είναι η x0 (mod n1 · · ·nk), όπου

x0 = b1N1M1 + · · ·+ bkNkMk.

Παράδειγµα 2.34 Να λυθεί το σύστηµα

x ≡ 2 (mod 5), x ≡ 3 (mod 7), x ≡ 4 (mod 11).

Λύση:
Επειδή οι ακέραιοι 5, 7, 11 είναι πρώτοι µεταξύ τους ανά δύο, σύµφωνα µε το Κινέ-

Ϲικο Θεώρηµα Υπολοίπων, το παραπάνω σύστηµα έχει µοναδική λύση mod385.

N1 = 7 · 11 = 77, N2 = 5 · 11 = 55, N3 = 5 · 7 = 35.

΄Ετσι, παίρνουµε τις γραµµικές ισοτιµίες

77x ≡ 1 (mod 5), 55x ≡ 1 (mod 7), 35x ≡ 1 (mod 11),

ή ισοδύναµα

2x ≡ 1 (mod 5), 6x ≡ 1 (mod 7), 2x ≡ 1 (mod 11),

οι οποίες έχουν τις λύσεις

x ≡ 3 (mod 5), x ≡ 6 (mod 7), x ≡ 6 (mod 11),

αντίστοιχα. Εποµένως, η λύση του συστήµατος είναι

x0 ≡ 77 · 3 · 2 + 55 · 6 · 3 + 35 · 6 · 4 = 2292 ≡ 367 (mod 385).

2

8καθώς οι ϕυσικοί n1, . . . , nk είναι πρώτοι µεταξύ τους ανά δύο έχουµε (Nj , nj) = 1 για j =
1, . . . , k, άρα η ισοτιµία έχει µοναδική λύση modnj .
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Μία γενίκευση του Κινέζικου Θεωρήµατος Υπολοίπων είναι η παρακάτω

Θεώρηµα 2.7 Το σύστηµα γραµµικών ισοτιµιών

x ≡ b1 (mod n1)

x ≡ b2 (mod n2)

...

x ≡ bk (mod nk)

έχει λύση, αν και µόνο αν, (ni, nj)|bi − bj για κάθε i, j µε i 6= j. Αν x0 είναι µία
λύση του συστήµατος, τότε το σύνολο λύσεών του είναι η x0 (mod [n1 · · ·nk]).

Στα παρακάτω παραδείγµατα ϕαίνεται και ο τρόπος µε τον οποίο επιλύουµε τα
γραµµικά συστήµατα µε τη ϐοήθεια του παραπάνω ϑεωρήµατος.

Παράδειγµα 2.35 Να λυθεί το σύστηµα των ισοτιµιών

x ≡ 1 (mod 15), x ≡ 7 (mod 18).

Λύση:
΄Εχουµε (15, 18) = 3 και 3|1 − 7. Επίσης [15, 18] = 90. Οπότε, σύµφωνα µε

το παραπάνω Θεώρηµα το σύστηµα έχει µοναδική λύση mod90. Αρκεί λοιπόν, να
προσδιορίσουµε µία λύση του για να έχουµε όλο το σύνολο λύσεων.

Θέτουµε στη δεύτερη γραµµική ισοτιµία x = 1 + 15y και παίρνουµε

1 + 15y ≡ 7 (mod 18).

Εποµένως 15y ≡ 6 (mod 18) απ’ όπου 5y ≡ 2 (mod 6). Εύκολα διαπιστώνουµε
ότι ο 4 επαληθεύει την παραπάνω ισοτιµία. Συνεπώς η µοναδική λύση του συστήµατος
είναι η

x = 1 + 15 · 4 ≡ 61 (mod 90).

2

Παράδειγµα 2.36 Να λυθεί το σύστηµα των ισοτιµιών

x ≡ 3 (mod 8), x ≡ 11 (mod 20), x ≡ 1 (mod 15).

Λύση:
΄Εχουµε (8, 20) = 4, (8, 15) = 1, (15, 20) = 5 και 4|3 − 11, 1|3 − 1, 5|1 − 11.

Επίσης [8, 20, 15] = 120. ΄Αρα σύµφωνα µε το παραπάνω Θεώρηµα προκύπτει ότι το
σύστηµα έχει µοναδική λύση (mod 120).

Θεωρούµε το σύστηµα των δύο πρώτων γραµµικών ισοτιµιών

x ≡ 3 (mod 8), x ≡ 11 (mod 20), [8, 20] = 40.
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Θέτουµε x = 3 + 8y στη δεύτερη ισοτιµία και έχουµε

3 + 8y ≡ 11 (mod 20),

απ’ όπου
y ≡ 1 (mod 5),

άρα
x ≡ 3 + 8 = 11 (mod 40).

΄Αρα το αρχικό µας σύστηµα είναι ισοδύναµο µε το σύστηµα

x ≡ 11 (mod 40), x ≡ 1 (mod 15).

Θέτουµε x = 11 + 40y στη δεύτερη ισοτιµία και παίρνουµε

11 + 40y ≡ 1 (mod 15).

Οπότε y ≡ 2 (mod 3). ΄Αρα η Ϲητούµενη λύση είναι

x ≡ 11 + 2 · 40 = 91 (mod 120).

2

΄Οµως το Θεώρηµα 2.7 δε µας ϐοηθάει για να λύνουµε συστήµατα της µορφής

aix ≡ bi, i = 1, . . . , k.

Ας ϑεωρήσουµε λοιπόν το σύστηµα των γραµµικών ισοτιµιών

a1x ≡ b1 (mod n1)

...

akx ≡ bk (mod nk).

Για να έχει το σύστηµα αυτό λύση, πρέπει κάθε µία από τις γραµµικές ισοτιµίες να
έχει λύση, που ισοδυναµεί µε τις σχέσεις di|bi όπου di = (ai, ni), i = 1, . . . , k. Ας
υποθέσουµε ότι di|bi, i = 1, . . . , k. Τότε υπάρχουν Ai, Bi, Ni ∈ Z µε (Ai, Ni) = 1
έτσι ώστε ai = diAi, bi = diBi, ni = diNi, i = 1, . . . , k. Οπότε το παραπάνω
σύστηµα είναι ισοδύναµο µε το εξής

A1x ≡ B1 (mod N1)

...

Akx ≡ Bk (mod Nk).
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Καθώς (Ai, Ni) = 1, η γραµµική ισοτιµία Aix ≡ Bi (mod Ni) έχει µοναδική λύση
την x ≡ Ci (mod Ni), i = 1, . . . , k. ΄Ετσι, το αρχικό µας σύστηµα είναι ισοδύναµο
µε το σύστηµα

x ≡ C1 (mod N1)

...

x ≡ Ck (mod Nk).

το οποίο µπορούµε να µελετήσουµε µε τις µεθόδους, που περιγράψαµε στα προη-
γούµενα.

Παράδειγµα 2.37 Να λυθεί το σύστηµα των ισοτιµιών

8x ≡ 4 (mod 20), 15x ≡ 10 (mod 35), 9x ≡ 12 (mod 39).

Λύση:
΄Εχουµε (8, 20) = 4, (15, 35) = 5, (9, 39) = 3. Καθώς 4|4, 5|10, 3|12, κάθε µία

από τις γραµµικές ισοτιµίες του συστήµατος έχει λύση. Το σύστηµα είναι ισοδύναµο
µε το εξής

2x ≡ 1 (mod 5), 3x ≡ 2 (mod 7), 3x ≡ 4 (mod 13).

Οι λύσεις των γραµµικών ισοτιµιών δίνουν το σύστηµα

x ≡ 3 (mod 5), x ≡ 3 (mod 7), x ≡ 10 (mod 13).

Οι ακέραιοι 5, 7, 13 είναι πρώτοι µεταξύ τους ανά δύο. Εποµένως το σύστηµα έχει
µοναδική λύση mod455. Θα λύσουµε πρώτα το σύστηµα

x ≡ 3 (mod 5), x ≡ 3 (mod 7).

Παρατηρούµε ότι ο 3 είναι µία λύση του συστήµατος. Επειδή (5, 7) = 1, η (µοναδι-
κή) λύση του συστήµατος είναι η x ≡ 3 (mod 35). Συνεπώς το αρχικό σύστηµα είναι
ισοδύναµο µε το σύστηµα

x ≡ 3 (mod 35), x ≡ 10 (mod 13).

Για να το λύσουµε ϑέτουµε x = 3 + 35y στη δεύτερη γραµµική ισοτιµία και έχουµε
3 + 35y ≡ 10 (mod 13), απ’ όπου 9y ≡ 7 (mod 13). Εύκολα διαπιστώνουµε ότι η
λύση αυτής της γραµµικής ισοτιµίας είναι η y ≡ 8 (mod 13) και εποµένως η λύση
του συστήµατος είναι η

x ≡ 3 + 8 · 35 = 283 (mod 455).

2
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Ασκηση 1: (Πρόβληµα του Branmagupta, 7ος αιώνας µ.Χ.) ΄Οταν παίρνουµε
αυγά από ένα καλάθι ανά 2,3,4,5,6 κάθε ϕορά, τότε µένουν αντίστοιχα : 1,2,3,4,5
αυγά στο καλάθι. ΄Οταν όµως παίρνουµε ανά 7 δεν µένει κανένα. Να υπολογισθεί
ο ελάχιστος αριθµός αυγών που πρέπει να περιέχει το καλάθι.
Ασκηση 2: (Το πρόβληµα του κινέζου µάγειρα) Σ’ ένα πλιάτσικο 17 πειρατές

αρπάζουν ένα µπαούλο γεµάτο χρυσές λίρες (ίσης αξίας). Αποφασίζουν να τις µοι-
ϱαστούν σε ίσα µέρη και να δώσουν το υπόλοιπο στον κινέζο µάγειρα του καραβιού
τους. Σ’ αυτόν αντιστοιχούν 3 λίρες. Σε µία ναυµαχία σκοτώνονται έξι από αυτούς.
Στο µάγειρα αντιστοιχούν τότε 4 λίρες. Κατόπιν σε ένα ναυάγιο σώζονται µόνο έξι
απ’ αυτούς, το µπαούλο και ο µάγειρας. Στο µάγειρα αντιστοιχούν τότε 5 λίρες.
Κατόπιν ο µάγειρας δηλητηριάζει τους πειρατές και παίρνει το µπαούλο. Πόσες
λίρες τουλάχιστον περιέχει το µπαούλο;
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3 Το µικρό Θεώρηµα του Fermat και η γενίκευσή

του

Θεώρηµα 3.1 Εάν p πρώτος και a ένας ϕυσικός αριθµός τότε :

(i) ap ≡ a (mod p)

(ii) (Το µικρό ϑεώρηµα του Fermat) εάν (a, p) = 1 τότε

ap−1 ≡ 1 (mod p).

Απόδειξη:

Σχόλιο: Υπάρχουν πολλές αποδείξεις του µικρού Θεωρήµατος του Fermat .
Επιλέξαµε αυτή η οποία χτίζει ϐήµα-ϐήµα την απόδειξη και είναι µέσα στις δυνα-
τότητες ενός µαθητή µε ενδιαφέρον για τα µαθηµατικά.

(i) Θα κάνουµε χρήση της µαθηµατικής επαγωγής. Για a = 1 ισχύει τετριµµένα.
Ας υποθέσουµε ότι p|ap − a. Θα αποδείξουµε ότι p|(a+ 1)p − (a+ 1).

Απ’τον τύπο του διωνύµου του Newton (9), έχουµε

(a+ 1)p = ap +

(
p

1

)
ap−1 +

(
p

2

)
ap−2 + · · ·+

(
p

p− 1

)
a+ 1.

Συνεπώς

(a+ 1)p − ap − 1 =

(
p

1

)
ap−1 +

(
p

2

)
ap−2 + · · ·+

(
p

p− 1

)
a.

΄Οµως το p διαιρεί το δεξί µέλος (10) άρα και το αριστερό. Συνδιάζοντας αυτό
µε την επαγωγική υπόθεση, έχουµε ότι

p | [(a+ 1)p − ap − 1] + (ap − a) = (a+ 1)p − (a+ 1).

(ii) Προφανώς από το (i) έχουµε p | ap − a⇒ p | a(ap−1 − 1) που σε συνδιασµό
µε το (a, p) = 1 δίνει το Ϲητούµενο

p | ap−1 − 1.

9(a+ b)n =

n∑
k=0

(
n

k

)
akbn−k.

10Η απόδειξη αυτού αφήνεται ως άσκηση στους αναγνώστες. Τα δύο ϐήµατα που χρειάζονται για
την απόδειξη είναι :

(a) Το γινόµενο n διαδοχικών ακεραίων διαιρείται από το n! και

(b) εαν p πρώτος, τότε οι
(
p
1

)
,
(
p
2

)
, . . . ,

(
p

p−1

)
διαιρούνται από το p.
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2

Παράδειγµα 3.1 (i) Αφού (2, 11) = 1 και ο 11 είναι πρώτος, ϑα είναι 211−1 ≡ 1
(mod 11). Πράγµατι όταν το 210 = 1024 διαιρεθεί µε το 11, αφήνει υπόλοιπο
1.

(ii) Με µεγαλύτερα νούµερα: π.χ. οι αριθµοί 23∗5∗112 = 4840 και 101 είναι πρώ-
τοι µεταξύ τους και αφού ο 101 είναι πρώτος, έχουµε 4840100 ≡ 1 (mod 101).

2

Πόρισµα 3.1 Εαν p πρώτος και a ένας ϕυσικός αριθµός µε (a, p) = 1, και d είναι ο
µικρότερος εκθέτης για τον οποίο ισχύει

ad ≡ 1 (mod p)

τότε d | p− 1.

Η απόδειξη αφήνεται ως άσκηση στους αναγνώστες.

2

4 Η συνάρτηση του Euler

Για δοσµένο ϕυσικό αριθµό n ≥ 1, συµβολίζουµε µε ϕ(n) το πλήθος των ϕυσικών
αριθµών των µικρότερων ή ίσων του n που είναι πρώτοι προς τον n. Με αυτό τον
τρόπο ορίσαµε µία συνάρτηση

ϕ : N→ N

µε

ϕ(n) = ]{k ∈ N\k ≤ n και (a, n) = 1}(11).

Παράδειγµα 4.1 ϕ(9) = 6 διότι οι 6 αριθµοί 1, 2, 4, 5, 7, 8 είναι µικρότεροι και πρώ-
τοι προς το 9.

2

Ιδιότητες της συνάρτησης Euler

(i) ϕ(1) = 1

11Το σύµβολο ]{. . .} συµβολίζει το πλήθος των στοιχείων του συνόλου {. . .}.
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(ii) Είναι ϕανερό ότι εάν n = p πρώτος, τότε ϕ(p) = p− 1 καθώς όλοι οι αριθµοί
οι µικρότεροι του p, δηλαδή οι 1, 2, . . . , p− 1, είναι πρώτοι προς τον p.

(iii) Η συνάρτηση ϕ είναι πολλαπλασιαστική δηλαδή εαν (m,n) = 1, τότε

ϕ(m · n) = ϕ(m) · ϕ(n)

(Για παράδειγµα ϕ(21) = ϕ(3 · 7) = ϕ(3) · ϕ(7) = (3− 1) · (7− 1) = 12).

(iv) Εαν p πρώτος, τότε

ϕ(pk) = pk − pk−1 = pk−1(p− 1)

[Απλά λογαριάστε το πλήθος των αριθµών που είναι µικρότεροι ή ίσοι του pk

και είναι πρώτοι προς τον pk (ή αντίθετα, αφαιρέστε τα πολλαπλάσια του p τα
οποία σε πλήθος είναι pk−1)].

(v) Γενικά, εαν n = pk11 p
k2
2 · · · p

kl
l η ανάλυση του n σε πρώτους (διακεκριµένους

µεταξύ τους) παράγοντες, χρησιµοποιήστε την ιδιότητα (iii) για να δείξετε
ότι :

ϕ(n) = pk1−11 (p1 − 1) · pk2−12 (p2 − 1) · · · pkl−1l (pl − 1)

= n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pl

)
= n

l∏
i=1

(
1− 1

pi

)
2

Παράδειγµα 4.2 Είναι

ϕ(1200) = ϕ(22 · 34 · 52) = 1200

(
1− 1

2

)(
1− 1

3

)(
1− 1

5

)
= 1200 · 1

2
· 2

3
· 4

5
= 320

΄Αρα µε αυτό τον τρόπο ϐρήκαµε, µε πολύ απλό τρόπο, ότι το πλήθος των ϕυσικών
που είναι µικρότεροι απ’το 1200 και πρώτοι προς αυτόν είναι 320.

2

Παράδειγµα 4.3 (i) Να αποδειχθεί ότι οι ϕυσικοί αριθµοί n ∈ N\{4} για τους
οποίους ισχύει ϕ(n) ≡ 2 (mod 4) είναι είτε της µορφής n = pk είτε της µορφής
n = 2pk, όπου k ∈ N και ο p ένας πρώτος µε p ≡ 3 (mod 4).

(ii) Να αποδειχθεί ότι δεν υπάρχει ϕυσικός αριθµός n µε ϕ(n) = 14.

Λύση:
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(i) Θα δείξουµε ότι στην ανάλυση του n σε πρώτους αριθµούς, δε γίνεται να υ-
πάρχουν περισσότεροι από δύο διακεκριµένοι πρώτοι αριθµοί οι οποίοι να είναι
≥ 3. Γι’αυτό, ας υποθέσουµε αντίθετα, ότι

n = pk11 p
k2
2 · · · p

kl
l , pi ≥ 3 ∀i = 1, . . . , l και l ≥ 2.

Τότε
ϕ(n) = pk1−11 (p1 − 1)pk2−12 (p2 − 1) · · · pkl−1l (pl − 1)

΄Οµως, καθώς l ≥ 2, υπάρχουν τουλάχιστον 2 άρτιοι παράγοντες µεταξύ των
(p1 − 1), (p2 − 1), . . . , (pl − 1). ΄Αρα ϕ(n) ≡ 0 (mod 4), άτοπο.

΄Αρα
n = 2rpk.

Εαν r ≥ 3 (r 6= 2 διότι n 6= 4) , τότε

ϕ(n) = 2r−1pk−1(p− 1) ≡ 0 (mod 4), άτοπο.

΄Αρα, r = 0, 1 (r 6= 2 διότι n 6= 4) συνεπώς

n = pk ή n = 2pk.

΄Εµεινε να δείξουµε ότι p ≡ 3 (mod 4). Εαν αντίθετα ήταν p ≡ 1 (mod 4)(12),
τότε ϑα είχαµε (και στις δύο περιπτώσεις για τον n)

ϕ(n) = pk(p− 1) ≡ 0 (mod 4), άτοπο.

΄Ετσι αποδείχθηκε η Ϲητούµενη.

(ii) Πρόκειται για άµεση εφαρµογή του πρώτου ερωτήµατος.

2

∆εν σταµατάνε όµως εδώ οι πολύ σηµαντικές εφαρµογές της συνάρτησης του
Euler . Υπάρχουν πολλές ακόµη εφαρµογές και σπουδαία ϑεωρήµατα που την
χρησιµοποιούν. Κλείνουµε αυτή την παράγραφο µε το Θεώρηµα του Euler , χωρίς
απόδειξη (καθώς υπάρχει σε πολλά κλασσικά ϐιβλία Θεωρίας Αριθµών), το οποίο
αποτελεί γενίκευση του µικρού Θεωρήµατος του Fermat .

Θεώρηµα 4.1 (Θεώρηµα Euler ) Εαν a είναι ϕυσικός πρώτος προς τον n τότε ισχύει

aϕ(n) ≡ 1 (mod n).

Παρατήρηση: Εαν n = p, τότε παίρνουµε το µικρό Θεώρηµα του Fermat .

12Προφανώς αφού p 6= 2, άρα p περιττός οπότε δεν γίνεται να είναι p ≡ 0, 2 (mod 4)
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Παράδειγµα 4.4 Επειδή ϕ(9) = 6, και (9, 4) = 1 έχουµε ότι 46 ≡ 1 (mod 9).

Πόρισµα 4.1 Εαν a είναι ϕυσικός πρώτος προς τον n, και k ≡ l (mod ϕ(n)), τότε

ak ≡ al (mod n).

Απόδειξη:

Ας υποθέσουµε χωρίς ϐλάβη της γενικότητας ότι k ≥ l. Τότε λόγω της k ≡ l
(mod ϕ(n)), συµπεραίνουµε ότι υπάρχει ακέραιος π τέτοιος ώστε k = πϕ(n) + l
άρα, λόγω και του ϑεωρήµατος του Euler , έχουµε

ak = al
(
aϕ(n)

)l ≡ al · 1l ≡ al (mod n)

2

5 Εφαρµογή του Θεωρήµατος Euler σε µία κατηγο-

ϱία ασκήσεων

Ας δώσουµε µερικές ασκήσεις και τον τρόπο µε τον οποίο µπορούµε να εργαστούµε
ώστε να τις λύσουµε µεθοδικά και εύκολα µε τα παραπάνω εφόδια .

Μία άσκηση της 6ης Εθνικής Μαθηµατικής Ολυµπιάδας του 1989 ήταν :

Παράδειγµα 5.1 Για ποιές τιµές του n ∈ N ο αριθµός 1n + 2n + 3n διαιρείται µε το
7 ;

Σχόλιο: Θα παρουσιάσουµε αρχικά (1η Λύση) την εξαιρετική λύση της συναδέλ-
ϕου Ε. Μήτσιου που δηµοσιεύθηκε τότε στο περιοδικό «∆ιάσταση» και κατόπιν (2η
Λύση) κάνοντας χρήση της παραπάνω ϑεωρίας.

1η Λύση (Ε. Μήτσιου)

Για n = 1 η δοθείσα παράσταση δεν διαιρείται µε το 7, για n = 2 διαιρείται µε το 7
και για n = 3 δεν διαιρείται µε το 7.

• Για n = 2k έχουµε

12k + 22k + 32k = 1 + 4k + 9k = 1 + 4k + πoλ.7 + 2k = πoλ.7 + 1 + 2k + 4k (1)

{ Εάν k = 3l τότε η (1) γίνεται

πoλ.7 + 1 + 23l + 43l = πoλ.7 + 1 + 8l + 64l

= πoλ.7 + 1 + πoλ.7 + 1l + πoλ.7 + 1l

= πoλ.7 + 3
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{ Εάν k = 3l + 1 τοτε η (1) γίνεται

πoλ.7 + 1 + 23l+1 + 43l+1 = πoλ.7 + 1 + 2 · 8l + 1 · 64l

= πoλ.7 + 1 + 2(πoλ.7 + 1l)

+ 4(πoλ.7 + 1l)

= πoλ.7 + 1 + 2 + 4 = πoλ.7

{ Εάν k = 3l + 2 τοτε η (1) γίνεται

πoλ.7 + 1 + 23l+2 + 43l+2 = πoλ.7 + 1 + 4 · 8l + 16 · 64l

= πoλ.7 + 1 + πoλ.7 + 4 · 1l

+ πoλ.7 + 16 · 1l

= πoλ.7 + 1 + 4 + 16 = πoλ.7

΄Αρα εάν n = 2k, τότε πρέπει k = 3l + 1 ή k = 3l + 2, δηλαδή n = 6l + 2 ή
n = 6l + 4.

• Για n = 2k + 1 έχουµε

12k+1 + 22k+1 + 32k+1 = 1 + 2 · 4k + 3 · 9k = 1 + 2 · 4k + πoλ.7 + 3 · 2k

= πoλ.7 + 2(1 + 2k + 4k) + 2k − 1

Βρήκαµε ότι αν k = 3l + 1 ή k = 3l + 2, τότε 1 + 2k + 4k = πoλ.7, . Θα
εξετάσουµε το 2k − 1 για k = 3l + 1 ή k = 3l + 2.

{ Αν k = 3l + 1 τότε

2k − 1 = 23l+1 − 1 = 2 · 8l − 1 = πoλ.7 + 2 · 1l − 1 = πoλ.7 + 1

άρα όχι πoλ.7

{ Αν k = 3l + 2 τότε

2k − 1 = 23l+2 − 1 = 4 · 8l − 1 = πoλ.7 + 4 · 1l − 1 = πoλ.7 + 3

άρα όχι πoλ.7

΄Αρα το 2k − 1 είναι πoλ.7 για k = 3l γιατί

23l − 1 = 8l − 1 = πoλ.7 + 1l − 1 = πoλ.7

όµως τότε το 1k+2k+4k δεν είναι πoλ.7 . ΄Αρα τελικά πρέπει ο n να είναι πoλ.2
και όχι πoλ.3, δηλαδή πρέπει n = 6k + 2 ή n = 6k + 4 ή αλλιώς n = 6k ± 2.
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2η Λύση Αφού το 7 είναι πρώτος αριθµός και (7, 2) = 1 = (7, 3), από το Μικρό
Θεώρηµα του Fermat ισχύει ότι

27−1 ≡ 1 (mod 7) οπότε 26 ≡ 1 (mod 7)

37−1 ≡ 1 (mod 7) οπότε 36 ≡ 1 (mod 7)

΄Αρα, το υπόλοιπο του 2n µε το 7, ϑα επαναλαµβάνεται το πολύ κάθε 6 ϐήµατα
και µάλιστα το ϐήµα της επανάληψης (Πόρισµα 3.1), ϑα είναι διαιρέτης του 6 (13)

(δηλαδή 1, 2, 3, 6). ΄Οµοια και για το υπόλοιπο της διαίρεσης του 3n µε το 7. Αυτό
που µένει λοιπόν να κάνουµε για να δούµε εποπτικά τα παραπάνω, είναι ένας απλός
πίνακας δυνάµεων για να ϐρούµε το 1n + 2n + 3n για τις διάφορες τιµές του υ, όπου
n = 6k + υ, υ = 0, 1, 2, 3, 4, 5, ϑα χρειαστούν το πολύ 6 ϐήµατα για να δούµε τα
δυνατά υπόλοιπα των 2n και 3n µε το 7.

υ = n (mod 6) 0 1 2 3 4 5 επανάληψη ανα
1n (mod 7) 1 1 1 1 1 1 1
2n (mod 7) 1 2 4 1 2 4 3
3n (mod 7) 1 3 2 6 4 5 6

1n + 2n + 3n (mod 7) 3 6 0 1 0 3 −

Τώρα ϕαίνεται καθαρά από τον παραπάνω πίνακα οτι ο αριθµός 1n + 2n + 3n είναι
πολλαπλάσιο του 7, όταν το n έχει τη µορφή n = 6k + 2 ή 6k + 4. (΄Η ακόµη, ότι ο
αριθµός 1n + 2n + 3n, διαιρούµενος µε το 7 δεν αφήνει ποτέ υπόλοιπο 2, 4, 5.)

2

Η µέθοδος αυτή µπορεί να εφαρµοστεί και για πολυπλοκότερα προβλήµατα τα
οποία, όπως το παρακάτω, που χωρίς συγκεκριµένη στρατηγική, είναι δύσκολο να
επιλυθούν.

Παράδειγµα 5.2 Να ϐρεθούν όλα τα δυνατά υπόλοιπα της διαίρεσης του αριθµού
A = 2 · 3n + 3 · 7n+1 + 53n+1 − 7 δια του 11.

Λύση

Σχόλιο: Απλά ϑα προσαρµόσουµε τα δεδοµένα στον πίνακα προσθέτοντας δύο
ακόµη γραµµες για το n+1 και το 3n+1 που εµφανίζονται ως εκθέτες στη δοθείσα
παράσταση.

Αφού (11, 3) = (11, 7) = (11, 5) = 1, ο ϱυθµός επανάληψης των 3n, 7n, 5n ϑα
είναι διαιρέτης του ϕ(11) = 10 (δηλαδή η επανάληψη τώρα ϑα είναι είτε ανά 1, 2, 5
ή 10) και έτσι ο αντίστοιχος πίνακας γίνεται (14)

13Σηµειώστε πόσο ϕυσιολογικά έρχεται τώρα, ότι οι περιπτώσεις που πρέπει να πάρουµε για το
n, είναι ως προς το υπόλοιπο που αφήνει όταν διαιρεθεί µε το 6, κάτι που ϕαίνεται και στην 1η
λύση.

14Προφανώς δεν χρειάζονται οι γραµµές των 3n (mod 11), 5n (mod 11), 7n (mod 11) απλά
µπαίνουν για να γίνει µια πρώτη σύγκριση.
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n (mod 10) 0 1 2 3 4 5 6 7 8 9 επανάληψη ανα
n+ 1 (mod 10) 1 2 3 4 5 6 7 8 9 0 −
3n+ 1 (mod 10) 1 4 7 0 3 6 9 2 5 8 −

3n (mod 11) 1 3 9 5 4 1 3 9 5 4 5
2 · 3n (mod 11) 2 6 7 10 8 2 6 7 10 8 5

7n (mod 11) 1 7 5 2 3 10 4 6 9 8 10
3 · 7n+1 (mod 11) 10 4 6 9 8 1 7 5 2 3 10

5n (mod 11) 1 5 3 4 9 1 5 3 4 9 5
53n+1 (mod 11) 5 9 3 1 4 5 9 3 1 4 5

A 10 1 9 2 2 1 4 8 6 8 −

Συµπεραίνουµε ότι εαν ο n είναι της µορφής n = 10k+2, τότε όταν ο A διαιρεθεί
µε το 11, αφήνει υπόλοιπο 1. ΄Ετσι, είναι έτοιµη µία (απαιτητική) άσκηση που
µπορεί να δειχτεί πλέον µε επαγωγή:
΄Ασκηση: Να αποδειχθεί ότι εαν το τελευταίο ψηφίο του αριθµού n είναι το 2,

τότε ο A αφήνει υπόλοιπο 1 όταν διαιρεθεί µε το 11.

2

Σχόλια:

1. Ασκήσεις όπως η παραπάνω αποδεικνύονται µε επαγωγή εαν γνωρίζουµε
όµως το αποτέλεσµα της διαίρεσης µε τον αριθµό. Για παράδειγµα παίρνω
µία άσκηση από το ϐιβλίο του αείµνηστου Θ.Ν. Καζαντζή, Θεωρία Αριθµών,
Β΄ ΄Εκδοση, Εκδόσεις Μαθηµατική Βιβλιοθήκη, Θεσσαλονίκη 1998.

΄Ασκηση Να δείξετε ότι εαν n ϕυσικός ≥ 1 τότε η παράσταση 24n+1 − 22n − 1
διαιρείται από το 9. Κατασκευάζοντας τον αντίστοιχο πίνακα, ϑα διαπιστώ-
σουµε ότι αφού (2, 9) = 1 και ϕ(9) = 6, τα υπόλοιπα της διαίρεσης του 2n µε
το 9 ϑα επαναλαµβάνονται ανά αριθµό που είναι διαιρέτης του 6. Μπορεί για
το συγκεκριµένο παράδειγµα (που η λύση µε επαγωγή είναι πολύ εύκολη),
η διαδικασία κατασκευής του πίνακα να είναι επίπονη, αλλά ϕανταστείτε ότι
ϑα µπορούσατε µε διάφορες δοκιµές να ανακαλύψετε µία τόσο συµµετρικά
ϕτιαγµένη άσκηση !

2. Με τον παραπάνω τρόπο µπορείτε να κατασκευάσετε τις δικές σας ασκήσεις
όπως την ακόλουθη που κατασκεύασα πριν από λίγο καιρό πειραµατιζόµενος
µπροστά στον υπολογιστή µε την παραπάνω µέθοδο:

΄Ασκηση 1: Να δείξετε ότι εαν n 6= 0 (mod 6) τότε

1n + 2n + 3n + 4n + 5n + 6n ≡ 0 (mod 7).

Η λύση της είναι αρκετά απλή εαν κατασκευάσετε τον γνωστό πίνακα και αφή-
νεται ως άσκηση.
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2

Ως γενίκευση αυτής της παρατήρησης µου γεννήθηκε το ερώτηµα εαν ισχύει
γενικά και το έθεσα ως προβληµατισµό στο Forum (15):
΄Ασκηση 2: Εαν n 6= 0 (mod (p− 1)) τότε

p−1∑
i=1

in ≡ 0 (mod p)

Λύση: Λύση σε αυτό το πρόβληµα έδωσε (µε εξαιρετικό τρόπο) ο Στέλιος, την
οποία παραθέτω παρακάτω για να την απολαύσετε.

Κατάρχήν παρατηρούµε ότι

pn+2 = p+

(
n+ 2

1

)
[1 + 2 + · · ·+ (p− 1)]

+

(
n+ 2

2

)[
12 + 22 + · · ·+ (p− 1)2

]
+ · · ·+

(
n+ 2

n+ 1

)[
1n+1 + 2n+1 + · · ·+ (p− 1)n+1

]
΄Αρα αν p | [1k + 2k + · · · + (p − 1)k] για κάθε k = 1, 2, · · · , n, όπου n ∈
{1, 2, · · · , (p− 3)}, τότε p | [(n+ 2)(1n+1 + 2n+1 + · · ·+ (p− 1)n+1)]

και επειδή n ∈ {1, 2, · · · , (p−3)} ϑα ισχύει ότι ο p δεν διαιρεί το (n+2). Συνεπώς
p | [1n+1 + 2n+1 + · · ·+ (p− 1)n+1].

Επαγωγικά λοιπόν αποδεικνύουµε ότι επειδή p | [1+2+ · · ·+(p−1)] =
p(p− 1)

2
ϑα ισχύει ότι p | [1k + 2k + · · ·+ (p− 1)k] για κάθε k = 1, 2, · · · , (p− 2)

και αφού a(p−1)m+u ≡ (ap−1)mau ≡ au (mod p) για κάθε a µε (a, p) = 1 (16)

προκύπτει ότι p | [1n+2n+ · · ·+(p−1)n] για κάθε n ∈ N∗ µε n 6≡ 0 (mod p−1),
όπου p πρώτος µεγαλύτερος του 2.
Σχόλιο: Στη ϐιβλιογραφία, έµαθα αργότερα, αναφέρεται ως Θεώρηµα Chevalley-

Warning του οποίου η απόδειξη δεν γίνεται συνήθως µε στοιχειώδη τρόπο αφού τα
µέσα που διαθέτει η Θεωρία Οµάδων, είναι πολύ ισχυρά και ϐγάζουν το επιθυµητό
αποτέλεσµα της άσκησης σε δύο γραµµές. Αυτή όµως είναι και η αξία της λύσης
του Στέλιου. ΄Οτι µε στοιχειώδη µέσα αποδεικνύει αυτή την Πρόταση.

2

Ακολουθεί µία πάρα πολύ καλή άσκηση από Μαθηµατικό ∆ιαγωνισµό µε την
οποία τελειώνουµε το άρθρο. Πριν δώσουµε την εκφώνηση δίνουµε ένα πολύ
ϐασικό Λήµµα:

15www.mathlinks.ro/Forum/viewtopic.php?t = 112234
16διότι από το Μικρό Θεώρηµα του Fermat ισχύει ότι ap−1 ≡ 1 (mod p) αν (a, p) = 1
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Λήµµα 5.1 Κάθε πρώτος αριθµός p > 3, είναι της µορφής 6k+1 ή 6k+5 (Πάρτε ένα
οποιοδήποτε ϕυσικό αριθµό n. Τότε n = 6k + υ, υ = 0, 1, . . . , 5 και δείξτε (ϕανερό)
ότι υ 6= 2, 3, 4 εαν n πρώτος)

Παράδειγµα 5.3 (2ος Εσωτερικός ∆ιαγωνισµός ΕΜΕ 1989)

Να αποδειχθεί ότι εαν p πρώτος, τότε 42p | 3p − 2p − 1.

Απόδειξη:

Αφού 42p = 2·3·7·p άρα αρκεί να δείξουµε οτι οA = 3p−2p−1 είναι πολλαπλάσιο
των πρώτων αριθµών 2, 3, 7, p (17)

(i) Με το 2: Φανερά ο A είναι άρτιος άρα A ≡ 0 (mod 2).

(ii) Με το 3: A = 3p − (2p + 1) = 3p − (2 + 1)(2p−1 + 2p−2 + · · · + 2 + 1) ≡ 0
(mod 3)

(iii) Με το p: Απ’το Θεώρηµα 3.1(i) έχουµε

3p ≡ 3 (mod p) και 2p ≡ 2 (mod 2)

΄Αρα
A = 3p − 2p − 1 ≡ 3− 2− 1 = 0 (mod p).

(iv) Με το 7:

Σύµφωνα λοιπόν µε το Λήµµα 5.1, κάθε πρώτος αριθµός είναι της µορφής
p = 6k + 1 ή p = 6k + 5.

• Εαν p = 6k + 1 τότε λόγω του Μικρού Θεωρήµατος του Fermat , αφού
(2, 7) = 1, είναι

26 ≡ 1 (mod 7) άρα 26k ≡ 1 (mod 7) άρα 26k+1 ≡ 2 (mod 7)

΄Οµοια, αφού (3, 7) = 1 έχουµε ότι

36k+1 ≡ 3 (mod 7)

και έτσι
A = 3p − 2p − 1 ≡ 3− 2− 1 = 0 (mod 7)

• Εαν p = 6k + 5 τότε λόγω όµοια όπως παραπάνω έχουµε

26k+5 ≡ 25 = 32 ≡ 4 (mod 7)

και
36k+5 ≡ 35 = 243 ≡ 5 (mod 7)

΄Αρα τελικά

A = 3p − 2p − 1 ≡ 5− 4− 1 = 0 (mod 7)

Σε κάθε περίπτωση λοιπόν έχουµε A ≡ 0 (mod 7)

17Θυµίζουµε οτι εάν p, q είναι δύο διακεκριµένοι πρώτοι αριθµοί και n ϕυσικός, µε p | n και q | n
τότε p · q | n.
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Σχόλιο: Παρατηρήστε ότι (2, 7) = 1 = (3, 7) και ϕ(7) = 6 άρα τα υπόλοι-
πα της διαίρεσης των 2k και 3k µε το 7, σύµφωνα µε όσα είπαµε παραπάνω,
επαναλαµβάνονται ανά έναν αριθµό ο οποίος είναι διαιρέτης του 6. Φτιάξτε
λοιπόν τον αντίστοιχο πίνακα, όπως έγινε στα παραπάνω παραδείγµατα, για να
δείξετε ότι στις περίπτωσεις p = 6k + 1, p = 6k + 5 έχουµε ότι A ≡ 0 (mod 7).
∆ικαιολογείται λοιπόν µε τα παραπάνω ο λόγος για τον οποίο χρειάστηκε να
εργαστούµε mod 6 και ο οποίος µας οδήγησε να καταλήξουµε στο (γενικό και
πολύ χρήσιµο) Λήµµα 5.1.

2
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Ασκησεις στη Θεωρια Αριθµων

1 Μαθηµατική Επαγωγή

1.1 Ασκήσεις Α΄ Οµάδας

΄Ασκηση 1.1 Να αποδείξετε ότι για οποιοδήποτε ϕυσικό n ≥ 1 ισχύει

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
.

΄Ασκηση 1.2 Να αποδείξετε ότι για οποιοδήποτε ϕυσικό n ≥ 1 ισχύει

12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

΄Ασκηση 1.3 Να αποδείξετε ότι για οποιοδήποτε ϕυσικό n ≥ 1 ισχύει

13 + 23 + 33 + · · ·+ n3 =

(
n(n+ 1)

2

)2

.

΄Ασκηση 1.4 Να αποδείξετε ότι για οποιοδήποτε ϕυσικό n ≥ 1 ισχύει

1 + 3 + 5 + · · ·+ (2n− 1) = n2.

΄Ασκηση 1.5 Να αποδείξετε ότι για οποιοδήποτε ϕυσικό n ≥ 1 ισχύει

12 + 32 + 52 + · · ·+ (2n− 1)2 =
n(4n2 − 1)

3
.

΄Ασκηση 1.6 Να αποδείξετε ότι για οποιοδήποτε ϕυσικό n ≥ 1 ισχύει

1 · 2 + 2 · 3 + 3 · 4 + · · ·+ n · (n+ 1) =
n(n+ 1)(n+ 2)

3
.

΄Ασκηση 1.7 Να αποδείξετε ότι για οποιοδήποτε ϕυσικό n ≥ 1 ισχύει

1 · 2 · 3 + 2 · 3 · 4 + 3 · 4 · 5 + · · ·+ n · (n+ 1) · (n+ 2) =
n(n+ 1)(n+ 2)(n+ 3)

3
.

Να γενικεύσετε το αποτέλεσµα και να αποδείξετε τον ισχυρισµό σας.

΄Ασκηση 1.8 Να αποδείξετε ότι για οποιοδήποτε ϕυσικό n ≥ 1 ισχύει

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

n · (n+ 1)
=

n

n+ 1
.

2



Ασκήσεις στη Θεωρία Αριθµών 1 Μαθηµατική Επαγωγή

΄Ασκηση 1.9 Να αποδείξετε ότι για οποιοδήποτε ϕυσικό n ≥ 1 ισχύει

(n+ 1) · (n+ 2) · · · (2n)

1 · 3 · 5 · · · (2n− 1)
= 2n.

΄Ασκηση 1.10 Να αποδείξετε ότι για οποιοδήποτε ϕυσικό n ≥ 4 ισχύει 3n > n2.

΄Ασκηση 1.11 (i) Να αποδείξετε ότι για οποιοδήποτε a > −1 και οποιοδήποτε ϕυσικό
n ≥ 1, ισχύει (1 + a)n ≥ 1 + na.

(ii) Να αποδείξετε ότι για οποιοδήποτε ϕυσικό n ισχύει 2n + 5n + 7n > 11n.

΄Ασκηση 1.12 Να αποδείξετε ότι για οποιοδήποτε ϕυσικό n ≥ 2 ισχύει

2 · 21 + 3 · 22 + 4 · 23 + · · ·n · 2n−1 = (n− 1) · 2n.

΄Ασκηση 1.13 Να αποδείξετε ότι για οποιοδήποτε ϕυσικό n ισχύει

12 − 22 + 32 − 42 + · · ·+ (−1)n−1n2 = (−1)n−1 · n(n+ 1)

2
.

΄Ασκηση 1.14 Να αποδείξετε ότι για οποιοδήποτε ϕυσικό n ισχύει

12

1 · 3
+

22

3 · 5
+

32

5 · 7
+ · · ·+ n2

(2n− 1)(2n+ 1)
=

n(n+ 1)

2(2n+ 1)
.

΄Ασκηση 1.15 Να αποδείξετε ότι για οποιοδήποτε ϕυσικό n ≥ 1 ο αριθµός

An = 2n+2 + 32n+1

είναι πολλαπλασιο του 7.

΄Ασκηση 1.16 Να αποδείξετε ότι για οποιοδήποτε ϕυσικό n ≥ 1 ο αριθµός

An = 24n+1 − 22n − 1

είναι πολλαπλασιο του 9.

΄Ασκηση 1.17 Να αποδείξετε ότι για οποιοδήποτε ϕυσικό n ≥ 1 ο αριθµός

An = 10n + 18n− 1

είναι πολλαπλασιο του 27.

΄Ασκηση 1.18 Να αποδείξετε ότι για οποιοδήποτε ϕυσικό n ο αριθµός

An = 24n + 292n+1

είναι πολλαπλασιο του 15.
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1.2 Ασκήσεις Β΄ Οµάδας Ασκησεις στη Θεωρια Αριθµων

1.2 Ασκήσεις Β΄ Οµάδας

΄Ασκηση 1.19 Να αποδείξετε ότι για οποιοδήποτε ϕυσικό n ≥ 3 ισχύει nn+1 > (n+ 1)n.

΄Ασκηση 1.20 Να αποδείξετε ότι εαν a, b, c είναι τα µήκη των πλευρών ορθογωνίου τριγώνου
ABC µε ∠A = 90◦, τότε an > bn + cn.

΄Ασκηση 1.21 Να αποδείξετε ότι για οποιοδήποτε ϕυσικό n ≥ 1 και οποιουσδήποτε πραγ-
µατικούς αριθµούς a, b ισχύει

(a+ b)n = Cn
na

nb0 + Cn
n−1a

n−1b1 + Cn
n−2a

n−2b2 + · · ·+ Cn
2 a

2bn−2 + Cn
1 a

1bn−1 + Cn
0 a

0bn,

όπου Cn
k =

n!

k!(n− k)!
(Ορίζουµε 0!=1 και k! = 1 · 2 · 3 · · · k για κάθε k ∈ N?).

΄Ασκηση 1.22 Να αποδείξετε ότι για οποιοδήποτε ϕυσικό n ≥ 2 ισχύει

1√
1

+
1√
2

+
1√
3

+ · · ·+ 1√
n
> 2
√
n+ 1− 2.

΄Ασκηση 1.23 Να αποδείξετε ότι για οποιοδήποτε ϕυσικό n ≥ 2 ισχύει

1

22
+

1

32
+ · · ·+ 1

n2
<

3

4
.

΄Ασκηση 1.24 Να αποδείξετε ότι για οποιοδήποτε ϕυσικό n ≥ 1, ο αριθµός(
1 +
√

2
)2n

+
(

1−
√

2
)2n

είναι άρτιος ακέραιος και ο αριθµός

1√
2

((
1 +
√

2
)2n

−
(

1−
√

2
)2n
)

είναι ακέραιος.

΄Ασκηση 1.25 Να αποδείξετε ότι για οποιοδήποτε ϕυσικό n ≥ 1 ισχύει

12

22
· 32

42
· · · (2n− 1)2

(2n)2
<

1

3n
.

΄Ασκηση 1.26 ∆είξτε οτι για κάθε ϕυσικό n υπάρχουν n διαφορετικοί ανα δύο διαιρέτες του
n! των οποίων το άθροισµα είναι n!.

΄Ασκηση 1.27 Να αποδείξετε ότι εαν k περιττός τότε 2n+2|k2n − 1 για οποιοδήποτε ϕυσικό
n ≥ 1.

΄Ασκηση 1.28 Ισχύει ότι για οποιοδήποτε ϕυσικό n ο αριθµός n2 + n+ 41 είναι πρώτος ;

΄Ασκηση 1.29 Να αποδείξετε επαγωγικά ότι εάν ένα σύνολο περιέχει n ≥ 1 στοιχεία, τότε
τα υποσύνολά του είναι σε πλήθος 2n.
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Ασκήσεις στη Θεωρία Αριθµών 2 ∆ιαιρετότητα

2 ∆ιαιρετότητα

2.1 Ασκήσεις Α΄ Οµάδας

΄Ασκηση 2.1 Να δείξετε ότι το άθροισµα και η διαφορά δύο περιττών αριθµών ή δύο άρτιων
είναι πάντα άρτιος.

΄Ασκηση 2.2 Να ϐρεθεί το υπόλοιπο της διαίρεσης του 1750 + 33100 δια του 8.

΄Ασκηση 2.3 Να ϐρεθεί το υπόλοιπο της διαίρεσης του 2540 + 1730 δια του 8.

΄Ασκηση 2.4 Αν ο ακέραιος a δεν είναι πολλαπλασιο του 5, να δείξετε ότι το υπόλοιπο της
διαίρεσης του a4 δια 5 είναι ίσο µε 1. Κατόπιν να δείξετε ότι αν οι ακέραιοι a, b δεν είναι
πολλαπλάσια του 5, τότε ο a4 − b4 είναι πολλαπλάσιο του 5.

΄Ασκηση 2.5 Να ϐρεθεί το τελευταίο ψηφίο του αριθµού

(i) 22009

(ii) 31821

(iii) 711453

(iv) 777333

΄Ασκηση 2.6 Αν ο αριθµός n είναι ϕυσικός, να δείξετε ότι ο αριθµός A = n(n2 + 2) είναι
πολλαπλάσιο του 3.

΄Ασκηση 2.7 Αν ο αριθµός n είναι ϕυσικός, να δείξετε ότι ο αριθµός A = n(n2 + 5) είναι
πολλαπλάσιο του 6.

΄Ασκηση 2.8 Αν οι a, b είναι ακέραιοι και τέτοιοι ώστε ο αριθµός a2 + b2 να είναι πολλα-
πλάσιο του 3, να αποδείξετε ότι καθένας εκ των a, b είναι πολλαπλάσιο του 3.

΄Ασκηση 2.9 Αν για τρεις ακεραίους a, b, c ο αριθµός a2 + b2 + c2 είναι πολλαπλασιο του
5, να αποδείξετε ότι ένας τουλάχιστον από τους a, b, c είναι πολλαπλασιο του 5.

΄Ασκηση 2.10 Αν οι a, b είναι ακέραιοι και τέτοιοι ώστε ο αριθµός a4 + b4 να είναι πολλα-
πλάσιο του 7, να αποδείξετε ότι καθένας εκ των a, b είναι πολλαπλάσιο του 7.

΄Ασκηση 2.11 Αν κανένας από τους ακεραίους a, b, c δεν είναι πολλαπλάσιος του 3, να
δείξετε ότι ο αριθµός a2 + b2 + c2 είναι πολλαπλάσιο του 3.

΄Ασκηση 2.12 Για ποιους ακεραίους k ο αριθµός 5k + 2 είναι πολλαπλάσιο του 4 ;
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2.1 Ασκήσεις Α΄ Οµάδας Ασκησεις στη Θεωρια Αριθµων

΄Ασκηση 2.13 Βρείτε όλους τους 2-ψήφιους αριθµούς που έχουν ακριβώς 3 διαιρέτες.

΄Ασκηση 2.14 Βρείτε όλους τους ϕυσικούς που έχουν ακριβώς 4 διαιρέτες µε την προϋπό-
ϑεση ότι το γινόµενο των διαιρετών τους είναι 225.

΄Ασκηση 2.15 Βρείτε όλους τους 4-ψήφιους που έχουν ακριβώς 5 διαιρέτες.

΄Ασκηση 2.16 Βρείτε όλα τα πολλαπλάσια του 10 που έχουν ακριβώς 6 διαιρέτες.

΄Ασκηση 2.17 Βρείτε το µικρότερο ϕυσικό αριθµό που έχει ακριβώς 42 διαιρέτες.

΄Ασκηση 2.18 Να δείξετε ότι δεν υπάρχουν 3-ψήφιοι ϕυσικοί που είναι πολλαπλάσια του
35 και οι οποίοι να έχουν ακριβώς 9 διαιρέτες.

΄Ασκηση 2.19 Βρείτε πρώτους αριθµούς x, y, z που είναι τέτοιοι ώστε ο αριθµός

n = 11x · 19y · 31z,

να έχει ακριβώς 144 διαιρέτες.

΄Ασκηση 2.20 Βρείτε το ϕυσικό αριθµό της µορφής n = 3a ·5b ·7c, αν ο 27n έχει 36 διαιρέτες
περισσότερους από το n και ο 49n έχει 12 διαιρέτες περισσότερους από το n.

΄Ασκηση 2.21 Να ϐρείτε για ποιους ακεραίους αριθµούς n ο αριθµός n + 1 διαιρεί τον
n2 + 1.

΄Ασκηση 2.22 Να ϐρείτε για ποιους ακεραίους αριθµούς n 6= 3 ο αριθµός n− 3 διαιρεί τον
n3 − 3.

΄Ασκηση 2.23 Να αποδείξετε ότι για οποιοδήποτε ϕυσικό n ≥ 1 ο αριθµόςA = 2n ·5n+1988
είναι πολλαπλάσιο του 18.

΄Ασκηση 2.24 Να αποδείξετε ότι για οποιοδήποτε ϕυσικό n ο αριθµός A = n5 − n είναι
πολλαπλασιο του 30.

΄Ασκηση 2.25 Εαν ο αριθµός 3a + 5b είναι πολλαπλάσιο του 17 για κάποιους ακεραίους
a, b τότε να αποδείξετε ότι και ο αριθµός 4a + b είναι πολλαπλάσιο του 17. Ισχύει το
αντίστροφο ;

΄Ασκηση 2.26 Εαν ο αριθµός 5a + 7b είναι πολλαπλάσιο του 31 για κάποιους ακεραίους
a, b τότε να αποδείξετε ότι και ο αριθµός 11a+ 3b είναι πολλαπλάσιο του 31.

΄Ασκηση 2.27 Αποδείξτε το κριτήριο διαιρετότητας του 3 και του 9.
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Ασκήσεις στη Θεωρία Αριθµών 2 ∆ιαιρετότητα

΄Ασκηση 2.28 Βρείτε τον αριθµό x ώστε ο αριθµός 2x5 να είναι πολλαπλάσιο του 3 (αντί-
στοιχα του 9).

΄Ασκηση 2.29 ∆είξτε ότι η διαφορά δύο διαδοχικών κύβων είναι πάντα περιττός.

΄Ασκηση 2.30 Βρείτε το τελευταίο ψηφίο του 72009.

΄Ασκηση 2.31 Να δείξετε ότι ο αριθµός A = 20072009 + 20082010 + 20092011 είναι πάντα
πολλαπλάσιο του 15.

΄Ασκηση 2.32 ∆είξτε ότι για καθε n ∈ N ο αριθµός A = 52n+3 · 9n+2 + 32n+1 · 25n+1 είναι
πολλαπλάσιο του 17.

΄Ασκηση 2.33 ∆είξτε ότι ο αριθµός A = 63n + 7n+1 · 32n+1 − 21n · 3n+2 είναι πολλαπλάσιο
του 13.

΄Ασκηση 2.34 Βρείτε τους ϑετικούς ακεραίους x, y που είναι τέτοιοι ώστε 45 | 4xy.

΄Ασκηση 2.35 Να αποδειχθεί ότι δεν υπάρχει ακέραιος αριθµός n που να ικανοποιεί την
ισότητα

n(n− 1) + (n− 1)(n+ 1) + n(n+ 1) + 3n5 = 3000000.

(∆ιαγωνισµός «Ο Θαλής» 1996)

΄Ασκηση 2.36 Να δείξετε ότι n2 | (n+ 1)n − 1.

΄Ασκηση 2.37 Αν ο n είναι περιττός ϕυσικός, τότε να δείξετε ότι n(n+1)
2
|n!.

΄Ασκηση 2.38 Αν n(n+1)
2
6 | n!, τότε ο n+ 1 είναι πρώτος.

΄Ασκηση 2.39 Να δείξετε ότι 1897 | 2903n − 803n − 464n + 261n.

΄Ασκηση 2.40 Να δείξετε ότι 1001 | 12009 + 22009 + · · ·+ 10002009.

΄Ασκηση 2.41 Να δείξετε ότι ο αριθµός A = 3 + 32 + 33 + · · · + 31986 είναι πολλαπλάσιο
του 156.

΄Ασκηση 2.42 Να δείξετε ότι για ν᾿1 ο αριθµόςA = 15n+1+3n+1+5·3n+2 είναι πολλαπλάσιο
του 27.

΄Ασκηση 2.43 Να δείξετε ότι ο αριθµός 111 . . . 1︸ ︷︷ ︸
91 άσσoι

είναι σύνθετος.

΄Ασκηση 2.44 Να δείξετε ότι 5 | 199 + 299 + 399 + 499.
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2.1 Ασκήσεις Α΄ Οµάδας Ασκησεις στη Θεωρια Αριθµων

΄Ασκηση 2.45 Να δείξετε ότι αν a, b ακέραιοι µε ab 6= 1 τότε ο αριθµός a4 + 4b4 είναι
σύνθετος.

΄Ασκηση 2.46 Να δείξετε ότι 100 | 1110 − 1.

΄Ασκηση 2.47 (i) Να δείξετε ότι δεν υπάρχει ακέραιος αριθµός n τέτοιος ώστε ο n3 + 3n
να είναι περιττός.

(ii) Να δείξετε ότι δεν υπάρχουν ακέραιοι αριθµοί x, y τέτοιοι ώστε

5x3 − 4y2 − 6xy + 15x+ 6y − 5 = 0.

(∆ιαγωνισµός «Ο Θαλής» 1996)

΄Ασκηση 2.48 Είναι γνωστό ότι ο αριθµός 27000001 έχει ακριβώς 4 γνήσιους διαιρέτες.
Να ϐρείτε το άθροισµά τους.

΄Ασκηση 2.49 Να δείξετε ότι εαν a3|b2 τότε a|b. Εαν a2|b3 τότε µπορούµε να ϐγάλουµε σαν
συµπέρασµα ότι a|b ;

΄Ασκηση 2.50 Να αποδείξετε ότι το τελευταίο µη µηδενικό ψηφίο του n! είναι πάντα άρτιο
για n ≥ 2.

΄Ασκηση 2.51 Να ϐρεθεί η µεγαλύτερη δύναµη του 15 που διαιρεί το 60!.

΄Ασκηση 2.52 Σε πόσα µηδενικά λήγει ο αριθµός 169! ;

΄Ασκηση 2.53 Σε πόσα µηδενικά λήγει ο αριθµός
500!

200!
;

΄Ασκηση 2.54 (i) Πόσοι ακέραιοι µεταξύ του 500 και του 2000 διαιρούνται και από το
3 αλλά και από το 7 ;

(ii) Πόσοι ακέραιοι µεταξύ του 500 και του 2000 διαιρούνται από το 3 ή από το 7 ;

(iii) Πόσοι ακέραιοι µεταξύ του 500 και του 2000 δεν διαιρούνται από το 3 ή από το 7 ;

΄Ασκηση 2.55 Μια παλιά και δυσδιάκριτη απόδειξη γράφει ότι 36 κοτόπουλα αγοράστηκαν
αντί του ποσού x73.9y •. Λαµβάνοντας υπόψη ότι καθένα κοτόπουλο κοστίζει λιγότερο από
10 •, να ϐρεθούν τα ψηφία που λείπουν.

΄Ασκηση 2.56 Ο 7-ψήφιος αριθµός 72x20y2 όπου οι x, y είναι ψηφία, διαιρείται από το 72.
Ποιές είναι οι δυνατές τιµές που µπορούν να πάρουν τα x, y ;

΄Ασκηση 2.57 Υποθέτουµε ότι ο 792 διαιρεί τον ακέραιο που έχει δεκαδική αναπαράσταση
13xy45z. Να ϐρεθούν τα ψηφία x, y, z.
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Ασκήσεις στη Θεωρία Αριθµών 2 ∆ιαιρετότητα

2.2 Ασκήσεις Β΄ Οµάδας

΄Ασκηση 2.58 Να αποδείξετε ότι αν n ≥ 3 περιττός ϕυσικός, τότε ο αριθµός 2n + 1 είναι
σύνθετος.

΄Ασκηση 2.59 Να δείξετε ότι ο αριθµός 111 . . .︸ ︷︷ ︸
n άσσoι

2 111 . . .︸ ︷︷ ︸
n άσσoι

είναι σύνθετος για κάθε n ∈ N?.

(∆ιαγωνισµός «Ο Ευκλείδης» 1997)

΄Ασκηση 2.60 Σε τετραγωνισµένο χαρτί 50×50 τοποθετούµε τους αριθµούς 1, 2, 3, . . . 2500.
Να εξετάσετε εαν είναι δυνατό να τοποθετήσουµε τους αριθµούς αυτούς έτσι ώστε το άθροισµα
των στοιχείων κάθε γραµµής και κάθε στήλης να είναι :

(i) περιττός αριθµός.

(ii) αριθµός µη διαιρετός από το 5.

(∆ιαγωνισµός «Ο Θαλής» 1997)

΄Ασκηση 2.61 Να αποδείξετε ότι εαν ο ϕυσικός αριθµός n > 4 είναι σύνθετος, τότε

n|(n− 1)!

΄Ασκηση 2.62 Να αποδείξετε ότι για κάθε n σύνθετο µε n > 4 ισχύει 2n|(n − 1)! (JBMO
2006)

΄Ασκηση 2.63 Βρείτε τους ϑετικούς ακεραίους που ικανοποιούν την εξίσωση

9(x2 + y2 + 1) + 2(3xy + 2) = 2005.

(JBMO 2005)

΄Ασκηση 2.64 Για τους ακεραίους x, y ισχύει ότι x3 + y3 + (x + y)3 + 30xy = 2000. Να
δείξετε ότι x+ y = 10. (JBMO 2000)

΄Ασκηση 2.65 Καλούµε έναν αριθµό ηµιπρώτο, εάν είναι σύνθετος αλλά όχι διαιρετός από
τους 2,3 και 5. Οι τρεις µικρότεροι είναι οι 49,77,91. Υπάρχουν 168 πρώτοι αριθµοί που
είναι µικρότεροι του 1000. Πόσοι ηµιπρώτοι είναι µικρότεροι του 1000 ;

΄Ασκηση 2.66 ΄Εστω n = 231 · 319. Πόσοι ϑετικοί διαιρέτες του n2 είναι µικρότεροι του n
αλλά δε διαιρούν το n;.
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2.2 Ασκήσεις Β΄ Οµάδας Ασκησεις στη Θεωρια Αριθµων

΄Ασκηση 2.67 Να ϐρεθούν οι ϑετικοί ακέραιοι k για τους οποίους ο αριθµός k
1

k−7 είναι
ακέραιος.

΄Ασκηση 2.68 Να αποδείξετε ότι υπάρχουν τουλάχιστον 5 Ϲευγάρια από διαδοχικούς ϑετι-
κούς ακεραίους τέτοιους ώστε το άθροισµα των τετραγώνων των αριθµών σε κάθε Ϲευγάρι
διαιρεί τον αριθµό 22006 + 1. (BMO Shortlist 2006)

΄Ασκηση 2.69 ΄Εστω A = {0, 1, 2, . . . , n} όπου n ∈ N. ΄Εστω S το σύνολο των τριάδων
(a1, a2, a3) όπου a1, a2, a3 ∈ A για τις οποίες |a1− a2| = |a2− a3| . Να ϐρεθεί ο αριθµός των
στοιχείων του συνόλου S (BMO Shortlist 2006)

΄Ασκηση 2.70 Να ϐρεθούν όλες οι τριάδες (m,n, p) ϑετικών ϱητών αριθµών που είναι

τέτοιες ώστε οι αριθµοί m+
1

np
, n+

1

pm
, p+

1

mn
να είναι ακέραιοι. (BMO 2006)

΄Ασκηση 2.71 Να αποδείξετε ότι ο αριθµός 2(2006m2 +2007mn+2008n2) µεm,n ϑετικούς
ακεραίους δεν είναι ποτέ τέλειο τετράγωνο ακεραίου. (Παραλλαγή ϑέµατος διαγωνισµού
«Ο Αρχιµήδης» 1994).

΄Ασκηση 2.72 Να αποδείξετε ότι για κάθε ϕυσικό αριθµό n, υπάρχει ϕυσικός αριθµός k
τέτοιος ώστε √

k + 2006n +
√
k =

(√
2007 + 1

)n
.

(Παραλλαγή ϑέµατος 2ης Προκριµατικής Φάσης 1997)

΄Ασκηση 2.73 Να αποδείξετε ότι η εξίσωση (x − y)3 + (y − z)3 + (z − x)3 = 30 δεν έχει
ακέραιες λύσεις. (1η Προκριµατική Φάση 1997)

΄Ασκηση 2.74 Να ϐρείτε τους ϑετικούς ακεραίους (x, y) που είναι τέτοιοι ώστε y|x2 + 1 και
x2|y3 + 1.

(Μεσογειακός 2002)

΄Ασκηση 2.75 Μπορούµε να ϕτιάξουµε µία ακολουθία από n διαδοχικούς σύνθετους αριθ-
µούς για οποιοδήποτε n ;

΄Ασκηση 2.76 Να ϐρεθούν όλοι οι ϑετικοί ακέραιοι n που είναι τέτοιοι ώστε ο n! να λήγει
σε ακριβώς 40 µηδενικά.

΄Ασκηση 2.77 Αν N είναι ένας αριθµός του οποίου το δεκαδικό ανάπτυγµα έχει 3n ίδια
ψηφία, να αποδείξετε ότι 3n|N .

΄Ασκηση 2.78 Να αποδείξετε ότι ο αριθµός 1 +
1

2
+

1

3
+ · · · + 1

n
δεν είναι ακέραιος για

οποιαδήποτε τιµή του ακεραίου n > 1.
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Ασκήσεις στη Θεωρία Αριθµών 3 Τέλειες δυνάµεις ακεραίων

3 Τέλειες δυνάµεις ακεραίων

3.1 Ασκήσεις Α΄ Οµάδας

΄Ασκηση 3.1 Να δείξετε ότι για n ≥ 1 ο αριθµός 111 . . . 1︸ ︷︷ ︸
2n άσσoι

− 222 . . . 2︸ ︷︷ ︸
n 2−άρια

είναι τετράγωνο ακε-

ϱαίου.

΄Ασκηση 3.2 Να δείξετε ότι για κάθε n ≥ 1, ο αριθµός 444 . . . 4︸ ︷︷ ︸
n 4−άρια

888 . . . 8︸ ︷︷ ︸
n−1 8−άρια

9 είναι τέλειο

τετράγωνο ακεραίου.

΄Ασκηση 3.3 Να ϐρεθούν όλα τα δυνατά υπόλοιπα που µπορεί να αφήσει ένα τέλειο τε-
τράγωνο όταν διαιρεθεί µε το 13.

΄Ασκηση 3.4 Να δείξετε ότι η εξίσωση 4x3 − 7y3 = 2003 δεν έχει ακέραιες λύσεις.

΄Ασκηση 3.5 Να δείξετε ότι η εξίσωση x3 + y4 = 7 δεν έχει ακέραιες λύσεις.

΄Ασκηση 3.6 Να αποδείξετε ότι η εξίσωση x2−4x−1996−9619−2000 = 0 δεν έχει ακέραια
λύση.

΄Ασκηση 3.7 Αν οι αριθµοί a, a + d, a + 2d είναι πρώτοι > 3, να δείξετε ότι 6 | d. (∆ιαγω-
νισµός «Ο Θαλής» 1997)

΄Ασκηση 3.8 Να αποδείξετε ότι στο σύνολο {11, 111, 1111, . . .} δεν υπάρχουν τέλεια τετρά-
γωνα.

΄Ασκηση 3.9 Να ϐρείτε όλους τους πρώτους p που είναι τέτοιοι ώστε ο 17p + 1 να είναι
τέλειο τετράγωνο ακεραίου.

΄Ασκηση 3.10 Να αποδείξετε ότι εαν (a, b) = 1 και το γινόµενο ab = 1 είναι µία τέλεια
k−δύναµη, τότε να αποδείξετε ότι κάθε ένα από τα a, b είναι τέλεια k−δύναµη.

΄Ασκηση 3.11 (i) ΄Εστω a, b, c ϑετικοί ακέραιοι. Να δείξετε ότι εάν οι ab, bc, ac είναι
τέλειοι κύβοι τότε κάθε ένας από τους a, b, c είναι τέλειος κύβος.

(ii) Να εξετάσετε τί συµβαίνει εάν στο προηγούµενο ερώτηµα έχουµε τέλεια k− δύναµη
για k οποιοδήποτε ακέραιο αντί για τέλειο κύβο.

΄Ασκηση 3.12 Υποθέτουµε ότι οι q1, q2, . . . , qn είναι περιττοί πρώτοι αριθµοί. Μπορεί ο
αριθµός N = (q1q2 · · · qn)2 + 1 να είναι τέλειο τετράγωνο ;
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3.2 Ασκήσεις Β΄ Οµάδας Ασκησεις στη Θεωρια Αριθµων

΄Ασκηση 3.13 Να αποδείξετε ότι οποιοσδήποτε αριθµός της µορφής 4k + 3 δεν µπορεί να
γραφτεί σαν άθροισµα δύο τετραγώνων.

΄Ασκηση 3.14 Να αποδείξετε ότι η εξίσωση x2 − 2y2 = 10 δεν έχει ακέραιες λύσεις.

΄Ασκηση 3.15 Να δείξετε ότι εαν ο n έχει περιττό πλήθος διαιρετών τότε ο n είναι τέλειο
τετράγωνο.

΄Ασκηση 3.16 Εαν ένας αριθµός n γραφτεί σαν άθροισµα κάποιων ακεραίων τότε το άθροι-
σµα των κύβων αυτών των ακεραίων είναι ισότιµο µε n (mod 6).

3.2 Ασκήσεις Β΄ Οµάδας

΄Ασκηση 3.17 Να ϐρεθούν όλοι οι ϕυσικοί n για τους οποίους η παράσταση

A = n4 + 4n3 + 5n2 + 6n

είναι τέλειο τετράγωνο ϕυσικού. (∆ιαγωνισµός «Ο Αρχιµήδης» 1997)

΄Ασκηση 3.18 Να αποδείξετε ότι η ισοτιµία x2 ≡ −1 (mod p) έχει λύση µε p πρώτο αριθµό,
αν και µόνο αν ο p είναι της µορφής p = 4k + 1 για κάποιο ακέραιο αριθµό k.

΄Ασκηση 3.19 Εαν ο p είναι πρώτος τότε να δείξετε ότι ο αριθµός A = 7p+ 3p− 4 δεν είναι
τέλειο τετράγωνο ακεραίου. (JBMO 2007)

΄Ασκηση 3.20 Να δείξετε ότι ο αριθµός

A = 111 . . . 1︸ ︷︷ ︸
1997 άσσoι

222 . . . 2︸ ︷︷ ︸
1997 δυάρια

5

είναι τέλειο τετράγωνο ακεραίου. (JBMO 1998)

΄Ασκηση 3.21 Να ϐρεθούν οι ακέραιοι n ≥ 1 ώστε ο n2 + 3n να είναι τέλειο τετράγωνο.
(JBMO 2000)

΄Ασκηση 3.22 ΄Εστω n ϑετικός ακέραιος. ΄Ενας αριθµός A έχει 2n ψηφία καθένα από τα
οποία είναι το 4 και ένας αριθµός B έχει n ψηφία καθένα από τα οποία είναι το 8. Να
δείξετε ότι ο αριθµός A+ 2B + 4 είναι τέλειο τετράγωνο ακεραίου. (JBMO 2003)

΄Ασκηση 3.23 Αν οι ϑετικοί ακέραιοι x, y είναι τέτοιοι ώστε οι αριθµοί 3x+ 4y και 4x+ 3y
να είναι τέλεια τετράγωνα, να δείξετε ότι οι αριθµοί x, y είναι και οι δύο πολλαπλάσια του
7.
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Ασκήσεις στη Θεωρία Αριθµών 3 Τέλειες δυνάµεις ακεραίων

΄Ασκηση 3.24 Να αποδείξετε ότι για οποιουσδήποτε ϑετικούς ακεραίους a, b ο αριθµός
(36a+ b)(a+ 36b) δεν είναι δύναµη του 2.

΄Ασκηση 3.25 Να αποδείξετε ότι το τετράγωνο περιττού αριθµού είναι πάντοτε της µορφής
8n+ 1.

΄Ασκηση 3.26 Να προσδιορίσετε τον πρώτο αριθµό p που είναι τέτοιος ώστε η παράσταση
A = 1 + p+ p2 + p3 + p4 είναι τέλειο τετράγωνο ακεραίου.

Εφαρµογές

(i) Αν οι a, b, c,m είναι ακέραιοι να αποδείξετε ότι ο αριθµός a2 + b2 + c2 δεν είναι ποτέ
της µορφής 8m+ 7.

(ii) Να δείξετε ότι η παράσταση 2n + 3n + 4n δεν είναι ποτέ τέλειο τετράγωνο ακεραίου
για n > 1 και περιττό.

(iii) Εάν οι a, b, c είναι ακέραιοι µε a2 = b2 + c2 τότε να δείξετε ότι 4|b ή 4|c.

(iv) Να αποδείξετε ότι η εξίσωση 2m − 1 = xn δεν έχει ακέραιες λύσεις αν m,n > 1.

(v) Να αποδείξετε ότι για a, n ϕυσικούς, η παράσταση

A = (a+ 1)n + (a+ 2)n + (a+ 3)n + (a+ 4)n

δεν είναι ποτέ τέλειο τετράγωνο ακεραίου.

(vi) Αν οι αριθµοί a1, a2, . . . , a1998 είναι ϕυσικοί και ικανοποιούν την ισότητα

a2
1 + a2

2 + · · ·+ a2
1997 = a2

1998,

να αποδείξετε ότι δύο τουλάχιστον από αυτούς είναι άρτιοι. (JBMO 1998)

(vii) Να αποδείξετε ότι η εξίσωση 3x2 − y2 = 5z δεν έχει ακέραιες λύσεις.

΄Ασκηση 3.27 Να αποδείξετε ότι το τετράγωνο οποιουδήποτε ακεραίου είναι της µορφής 3m
ή 3m+ 1.
Εφαρµογές

(i) Να αποδείξετε ότι το άθροισµα τριών διαδοχικών ακεραίων δεν µπορεί να είναι τέλειο
τετράγωνο.
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3.2 Ασκήσεις Β΄ Οµάδας Ασκησεις στη Θεωρια Αριθµων

(ii) Να δείξετε ότι η παράσταση 2n + 3n + 4n δεν είναι ποτέ τέλειο τετράγωνο ακεραίου για
n άρτιο.

(iii) Εάν a, b, c ακέραιοι µε a2 = b2 + c2, τότε 3|bc.

(iv) Να αποδείξετε ότι η εξίσωση 3x2 − y2 = 1998 δεν έχει ακέραιες λύσεις.

(v) Να αποδείξετε ότι για οποιοδήποτε ακέραιο n, ο αριθµός A = (n− 1)3 + n3 + (n+ 1)3

είναι πολλαπλάσιο του 9.

(vi) Να αποδείξετε ότι το άθροισµα των κύβων εννέα διαδοχικών ακεραίων διαιρείται από
το 27.

΄Ασκηση 3.28 Να αποδείξετε ότι το τετράγωνο οποιουδήποτε ακεραίου είναι της µορφής 5m
ή 5m± 1.
Εφαρµογές

(i) Εάν a, b, c ακέραιοι µε a2 = b2 + c2 τότε 5|abc.

(ii) Να αποδείξετε ότι η εξίσωση x2 − 5y2 = 200 δεν έχει ακέραιες λύσεις.

(iii) Για n > 3 ϕυσικό, ο αριθµός Sn =

n∑
k=1

k! δεν είναι ποτέ τέλειο τετράγωνο ακεραίου.

(iv) Εάν οι a, b είναι ακέραιοι τέτοιοι ώστε 5|a4 + b4, τότε να δείξετε ότι 54|a4 + b4.

(v) Να αποδείξετε ότι η εξίσωση x2 + xy + y2 = 5z2 δεν έχει λύση στους ακεραίους.

΄Ασκηση 3.29 Να αποδείξετε ότι ο κύβος οποιουδήποτε ακεραίου είναι της µορφής 7m ή
7m± 1.
Εφαρµογές

(i) Να αποδείξετε ότι η εξίσωση x3 + y3 = 2006 δεν έχει ακέραιες λύσεις.

(ii) Για n > 1 ϕυσικό, ο αριθµός Sn =

n∑
k=1

k! δεν είναι ποτέ τέλειος κύβος ακεραίου.

(iii) Να αποδείξετε ότι η παράσταση A = 1n + 2n + 3n + 4n δεν είναι ποτέ τέλειος κύβος
ακεραίου.

(iv) Να αποδείξετε ότι η παράστασηA = 1+2n+22n δεν είναι ποτέ τέλειος κύβος ακεραίου.

(v) Να αποδείξετε ότι η εξίσωση 19x3 − 84y2 = 1984 δεν έχει λύσεις στους ακεραίους
(Ρωσία 1984).
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Ασκήσεις στη Θεωρία Αριθµών 3 Τέλειες δυνάµεις ακεραίων

(vi) Να αποδείξετε ότι η παράσταση A = 2n + 3n + 5n + 6n δεν είναι ποτέ τέλειος κύβος
ακεραίου.

(vii) Εάν οι αριθµοί a, b, c είναι ακέραιοι τέτοιοι ώστε 7|a3 + b3 + c3 τότε 7|abc.

΄Ασκηση 3.30 Να αποδείξετε ότι ο κύβος οποιουδήποτε ακεραίου είναι της µορφής 9m ή
9m± 1.
Εφαρµογές

(i) Να αποδείξετε ότι το άθροισµα των τετραγώνων τριών διαδοχικών ακεραίων δεν είναι
ποτέ τέλειος κύβος ακεραίου.

(ii) Να αποδείξετε ότι η εξίσωση x3 + y3 + z3 = 2003 δεν έχει ακέραιες λύσεις.

(iii) Εάν οι αριθµοί a, b, c είναι ακέραιοι τέτοιοι ώστε 9|a3 + b3 + c3 τότε 3|abc.

(iv) Να αποδείξετε ότι υπάρχουν άπειροι ακέραιοι που δε γράφονται σαν άθροισµα τριών
τέλειων κύβων ακεραίων αριθµών.

(v) Να αποδείξετε ότι ο αριθµός 123456 καθώς και οποιοσδήποτε 6-ψήφιος προκύψει από
την αντιµετάθεση των ψηφίων του, δεν είναι τέλειος κύβος ακεραίου.

(vi) Εάν οι αριθµοί a, b, c είναι ακέραιοι τέτοιοι ώστε 32|a3 + b3 + c3 να αποδείξετε ότι
36|a3 + b3 + c3.

(vii) Να ϐρεθούν όλοι οι ϑετικοί ακέραιοι a, b, c που είναι τέτοιοι ώστε a3 + b3 + c3 = 2001.
(JBMO 2001)

΄Ασκηση 3.31 Να αποδείξετε ότι το γινόµενο οποιονδήποτε τεσσάρων διαδοχικών ακεράιων
δεν είναι ποτέ τέλειο τετράγωνο 1

΄Ασκηση 3.32 (i) Να αποδείξετε ότι κανένας αριθµός της µορφής 8k+7 όπου k ακέραιος,
δεν µπορεί να γραφτεί σαν άθροισµα τριών τετραγώνων.

(ii) Να κάνετε χρήση του παραπάνω αποτελέσµατος για να δείξετε ότι κανένας αριθµός
της µορφής 4m(8k+7) όπουm ϑετικός ακέραιος και k ακέραιος, δεν µπορεί να γραφτεί
σαν άθροισµα τριών τετραγώνων.

΄Ασκηση 3.33 Να ϐρείτε το µικρότερο ϑετικό ακέραιο n που είναι τέτοιος ώστε ο
n

3
να είναι

τέλειος κύβος, ο
n

5
να είναι τέλεια πέµπτη δύναµη και ο

n

7
να είναι τέλεια έβδοµη δύναµη.

1Στην πραγµατικότητα αυτό είναι µερικό αποτέλεσµα ενός γενικότερου πολύ ισχυρού ϑεωρήµατος που
οφείλεται στους Erdos και Selfridge (1975) σύµφωνα µε το οποίο το γινόµενο οποιονδήποτε διαδοχικών
ακεραίων δεν είναι ποτέ τέλεια k− δύναµη για οποιονδήποτε k ≥ 2.
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΄Ασκηση 3.34 Να εξετάσετε εαν υπάρχουν ϑετικές ακέραιες τιµές του x ώστε οι παραστά-
σεις

(i) −5x + 55 + 5x

(ii) 24 + 27 + 2x

να γίνονται τέλεια τετράγωνα. (∆ιαγωνισµός «Ο Αρχιµήδης» 1995)

4 Μέγιστος Κοινός ∆ιαιρέτης και Ελάχιστο Κοινό Πολ-
λαπλάσιο

4.1 Ασκήσεις Α΄ Οµάδας

΄Ασκηση 4.1 Για οποιουσδήποτε µη µηδενικούς ακεραίους a, b, να δείξετε ότι

(a, b) = [a, b]⇔ |a| = |b|.

΄Ασκηση 4.2 Αν a, b, c ϕυσικοί και (a, b, c)[a, b, c] = abc να δείξετε ότι

(a, b) = (b, c) = (c, a) = 1.

΄Ασκηση 4.3 Για οποιουσδήποτε ϕυσικούς a, b, c να αποδειχθούν οι ισότητες :

(i) (a, [b, c]) = [(a, b), (a, c)],

(ii) [a, (b, c)] = ([a, b], [a, c]).

΄Ασκηση 4.4 Για οποιουσδήποτε µη µηδενικούς ακεραίους a, b, c να δείξετε ότι

([a, b], [b, c], [c, a]) = [(a, b), (b, c), (c, a)].

΄Ασκηση 4.5 Αν οι ϕυσικοί m,n είναι πρώτοι µεταξύ τους, να δείξετε ότι(
m2 + n2,m+ n

)
) ∈ {1, 2}.

΄Ασκηση 4.6 ∆είξτε ότι (15n2 + 8n+ 6, 30n2 + 21n+ 13) = 1 για κάθε n ϕυσικό.

΄Ασκηση 4.7 ΄Εστω a, b, c ϕυσικοί αριθµοί τέτοιοι ώστε η παράσταση

K =
a+ 1

b
+
b+ 1

c
+
c+ 1

a

είναι ϕυσικός. Να αποδείξετε ότι (a, b, c) ≤ 3
√
ab+ bc+ ca.
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΄Ασκηση 4.8 Να αποδείξετε ότι το κλάσµα
n4 + 3n2 + 1

n3 + 2n
είναι ανάγωγο για κάθε n ∈ Z?.

΄Ασκηση 4.9 ΄Εστω a, b, c, d ϑετικοί ακέραιοι µε b 6= d. Να δείξετε ότι εάν τα κλάσµατα
a

b
και

c

d
είναι ανάγωγα τότε η παράσταση

a

b
+
c

d
δεν είναι ακέραιος.

΄Ασκηση 4.10 Να δείξετε ότι οι αριθµοί n! + 1 και (n+ 1)! + 1 είναι πρώτοι µεταξύ τους.

΄Ασκηση 4.11 Εαν (a, b) = 1 τότε να δείξετε ότι (a+ b, a− b) = 1 ή 2.

΄Ασκηση 4.12 Να αποδείξετε ότι για οποιοδήποτε ϕυσικό αριθµό n, τα παρακάτω Ϲεύγη
αριθµών είναι αριθµοί πρώτοι µεταξύ τους :

(i) 6n+ 5 και 7n+ 6,

(ii) 10n+ 3 και 15n+ 4,

(iii) 4 · 7n + 3 και 5 · 7n + 4.

΄Ασκηση 4.13 Εαν (a, b) = 1 και c|a+ b, να δείξετε ότι (a, c) = (b, c) = 1.

΄Ασκηση 4.14 Να δείξετε ότι εαν (b, c) = 1 και m|b τότε (m, c) = 1.

΄Ασκηση 4.15 Με τον Ευκλείδειο Αλγόριθµο ϐρείτε το (93,51) καθώς επίσης και ακεραίους
a, b που είναι τέτοιοι ώστε 93a+ 51b = (93, 51).

΄Ασκηση 4.16 Βρείτε τους ϕυσικούς a, b που είναι τέτοιοι ώστε a+b = 1089 και (a, b) = 121.

΄Ασκηση 4.17 Βρείτε τους ϕυσικούς a, b που είναι τέτοιοι ώστε ab = 1600 και

[a, b] = 4 · (a, b).

΄Ασκηση 4.18 Βρείτε τους ϕυσικούς a, b µε a < b που είναι τέτοιοι ώστε [a, b]− (a, b) = 34.

΄Ασκηση 4.19 Εαν τοποθετήσουµε τους µαθητές ενός σχολείου σε σειρά 2,3,4,5 ή 6 µαθη-
τών τότε περισσεύει κάθε ϕορά ένας µαθητής αλλά εαν τους τοποθετήσουµε σε σειρά των
7, τότε όλες οι σειρές είναι πλήρεις και δεν περισσεύει κανένας µαθητής. Να ϐρείτε τον
ελάχιστο αριθµό µαθητών που µπορεί να έχει το σχολείο.

΄Ασκηση 4.20 Να δείξετε ότι εαν b ϑετικός ακέραιος τότε ακριβώς (b, n) από τους αριθµούς
n, 2n, 3n, . . . , bn είναι πολλαπλάσια του b.

΄Ασκηση 4.21 Ποιός είναι ο ελάχιστος ϑετικός ϱητός αριθµός που µπορεί να εκφραστεί στη

µορφή
x

30
+

y

36
µε x, y ακεραίους ;
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4.2 Ασκήσεις Β΄ Οµάδας Ασκησεις στη Θεωρια Αριθµων

4.2 Ασκήσεις Β΄ Οµάδας

΄Ασκηση 4.22 Για οποιουσδήποτε ϕυσικούς a,m, n µε a ≥ 2, να δείξετε ότι

(am − 1, an − 1) = a(m,n) − 1.

΄Ασκηση 4.23 Ο αριθµός An = 23n + 36n+2 + 56n+2 ορίζεται για n = 0, 1, 2, . . . , 1999. Να
ϐρείτε το µέγιστο κοινό διαιρέτη των αριθµών A0, A1, A2, . . . , A1999. (JBMO 1999)

΄Ασκηση 4.24 ΄Εστωm,n ϑετικοί ακέραιοι τέτοιοι ώστε [m,n]+(m,n) = m+n. Να δείξετε
ότι ένας από τους δύο αριθµούς είναι διαιρετός από τον άλλο. (Ρωσία 1995)

΄Ασκηση 4.25 Να αποδείξετε ότι το κλάσµα
21n+ 4

14n+ 3
είναι ανάγωγο για κάθε n ∈ Z. (IMO

1959)

΄Ασκηση 4.26 Το άθροισµα δύο ϑετικών ακεραίων είναι ίσο µε 5432 και το ελάχιστο κοινό
πολλαπλάσιό τους είναι 223020. Να ϐρείτε τους δύο αριθµούς.

΄Ασκηση 4.27 Εαν (a, b) = 10 να ϐρείτε όλες τις πιθανές τιµές που παίρνει το (a3, b4).

΄Ασκηση 4.28 Ας υποθέσουµε ότι ο n είναι ϑετικός ακέραιος και έχει r διακεκριµένους
πρώτους διαιρέτες. Να δείξετε ότι υπάρχουν 2r διατεταγµένα Ϲεύγη (x, y) πρώτων µεταξύ
τους ακεραίων τέτοια ώστε xy = n.

5 Πρώτοι αριθµοί και τα ϐασικά ϑεωρήµατά τους

5.1 Ασκήσεις Α΄ Οµάδας

΄Ασκηση 5.1 Να ϐρεθούν όλοι οι πρώτοι αριθµοί της µορφής n3 − 1 µε n > 1.

΄Ασκηση 5.2 Να ϐρεθούν οι τιµές του n για τις οποίες ο αριθµός n4 + 4 είναι πρώτος.

΄Ασκηση 5.3 Να δείξετε ότι αν ο αριθµός p είναι περιττός πρώτος και

a

b
= 1 +

1

2
+

1

3
+ · · ·+ 1

p− 1
,

τότε p | a.

΄Ασκηση 5.4 Να δείξετε ότι αν ο αριθµός an − 1, 1 < a ∈ N είναι πρώτος τότε a = 2 και ο
n είναι επίσης πρώτος. (Πρώτοι αυτής της µορφής ονοµάζονται πρώτοι του Mersenne )
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΄Ασκηση 5.5 Ας υποθέσουµε ότι οι p και p+2 είναι πρώτοι αριθµοί µε p > 3. Να αποδείξετε
ότι το άθροισµά τους διαιρείται από το 12.

΄Ασκηση 5.6 Να κάνετε χρήση της ισότητας 640 = 5 · 27 για να αποδείξετε ότι ο αριθµός
Fermat F5 = 225 + 1 διαιρείται από το 641.

΄Ασκηση 5.7 Βρείτε έναν ακέραιο n µε 0 ≤ n ≤ 16 που είναι τέτοιος ώστε

3100 ≡ n (mod 17).

΄Ασκηση 5.8 Ποιό είναι το (ελάχιστο ϑετικό) υπόλοιπο της διαίρεσης του 55142 µε το 143 ;

΄Ασκηση 5.9 Να δείξετε ότι για οποιοδήποτε µη αρνητικό ακέραιοι αριθµό n, ο αριθµός
A = 36n − 26n διαιρείται από το 35.

΄Ασκηση 5.10 Υποθέτουµε ότι ο αριθµός p είναι πρώτος και ότι ισχύει ap + bp = cp. Να
αποδείξετε ότι p|a+ b− c.

΄Ασκηση 5.11 Εαν p, q διακεκριµένοι περιττοί πρώτοι αριθµοί έτσι ώστε p − 1|q − 1. Εαν
(a, pq) = 1, να δείξετε ότι aq−1 ≡ 1 (mod pq).

΄Ασκηση 5.12 Κάνοντας χρήση του ϑεωρήµατος του Fermatνα δείξετε ότι κάθε πρώτος
p > 5 διαιρεί άπειρους αριθµούς της µορφής 999 . . . 9 (δηλαδή αριθµούς που στη δεκαδική
τους αναπαράσταση περιέχουν µόνο το ψηφίο 9).

΄Ασκηση 5.13 (i) Να αποδείξετε ότι υπάρχουν άπειροι ακέραιοι n για τους οποίους ο
αριθµός n!− 1 είναι σύνθετος.

(ii) Να αποδείξετε ότι υπάρχουν άπειροι ακέραιοι n για τους οποίους ο αριθµός n! + 1
είναι σύνθετος.

΄Ασκηση 5.14 Να δείξετε ότι εάν ο p είναι πρώτος και 1 ≤ n ≤ p− 1, τότε

(n− 1)!(p− n)! ≡ (−1)n (mod p).

΄Ασκηση 5.15 Ας υποθέσουµε ότι 2n−1 ≡ 1 (mod n). Εαν N = 2n − 1, να δείξετε ότι
2N−1 ≡ 1 (mod N).

΄Ασκηση 5.16 Να αποδείξετε ότι το τελευταίο ψηφίο της τέταρτης δύναµης οποιουδήποτε
ακεραίου αριθµού που δε διαιρείται από το 2 ή το 5 είναι το 1.

΄Ασκηση 5.17 Να ϐρείτε τα δύο τελευταία ψηφία της δεκαδικής αναπαράστασης του 999.
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΄Ασκηση 5.18 Να δείξετε ότι εαν ο p > 3 είναι πρώτος τότε ο αριθµός p2 − 1 είναι πάντα
πολλαπλασιο του 24.

΄Ασκηση 5.19 Να δείξετε ότι εαν ο αριθµός 2m+1 είναι πρώτος (m ϕυσικός) τότε τοm είναι
δύναµη του 2.

΄Ασκηση 5.20 Να δείξετε ότι όλοι οι αριθµοί του Fermat µε τάξη µεγαλύτερη από 1 (δηλαδή
οι αριθµοί Fn = 22n + 1 µε n > 1), έχουν τελευταίο ψηφίο το 7.

΄Ασκηση 5.21 Για ποιες τιµές του n ισχύει φ(n) = n− 2 ;

΄Ασκηση 5.22 Να αποδείξετε ότι εάν d, n ακέραιοι τέτοιοι ώστε d|n, τότε φ(d)|φ(n).

΄Ασκηση 5.23 Να αποδείξετε ότι φ(n) = φ(2n) όταν το n είναι περιττός.

΄Ασκηση 5.24 Εαν n άρτιος τότε φ(n) =
n

2
αν και µόνο αν n = 2k για κάποιο ακέραιο

k ≥ 1.

5.2 Ασκήσεις Β΄ Οµάδας

΄Ασκηση 5.25 Να ϐρεθούν όλοι οι ακέραιοι n ≥ 1 για τους οποίους ο n4 + 4n είναι πρώτος.

΄Ασκηση 5.26 (i) Να ϐρεθεί ένας κλειστός τύπος για το γινόµενο

P =
(

1 + 220
)(

1 + 221
)(

1 + 222
)
· · ·
(
1 + 22n

)
(ii) Κάνοντας χρήση του παραπάνω τύπου, να δείξετε ότι για όλους τους ϑετικούς ακεραί-

ους n ισχύει 22n + 1 | 222
n

+1 − 2.

΄Ασκηση 5.27 Αν µε pn συµβολίζουµε τον n−οστό πρώτο αριθµό, να δείξετε ότι

(i) pn ≤ p1 · · · pn−1 + 1 για n ≥ 2,

(ii) pn−1 ≥ n+ 2 για n ≥ 5,

(iii) pn−1 ≥ 2n+ 2 για n ≥ 10,

(iv) pn ≤ 22n−1
για κάθε n.

΄Ασκηση 5.28 Καλούµε έναν αριθµό n τέλειο εάν το άθροισµα των ϑετικών ακεραίων
διαιρετών του (µαζί µε το 1 και το n) ισούται µε 2n. Να ϐρείτε όλους τους τέλειους αριθµούς
n που είναι τέτοιοι ώστε οι αριθµοί n− 1 και n+ 1 να είναι πρώτοι αριθµοί. (JBMO 2006)
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΄Ασκηση 5.29 Να ϐρείτε όλους τους πρώτους αριθµούς p που είναι τέτοιοι ώστε ο αριθµός
p2 + 11 να έχει ακριβώς 6 διαφορετικούς διαιρέτες (συµπεριλαµβανοµένου του 1 και του
ίδιου του αριθµού).

΄Ασκηση 5.30 ΄Εστω p πρώτος και 1 ≤ k ≤ p− 1 ακέραιος. Να δείξετε ότι(
p− 1

k

)
≡ (−1)k (mod p).

΄Ασκηση 5.31 Εάν ο p είναι πρώτος τότε να εξετάσετε εαν ο αριθµός

N = p1997 + 1997p + 19981997+p

είναι πρώτος. (∆ιαγωνισµός «Ο Θαλής» 1997)

΄Ασκηση 5.32 (i) Να αποδείξετε ότι οποιοσδήποτε ϑετικός ακέραιος της µορφής 4k + 3
έχει ένα πρώτο διαιρέτη της ίδιας µορφής.

(ii) Κάνοντας χρήση του παραπάνω αποτελέσµατος και µιµούµενος την απόδειξη του Ευ-
κλείδη, να δείξετε ότι υπάρχουν άπειροι πρώτοι της µορφής 4k + 3.

΄Ασκηση 5.33 Εαν p πρώτος αριθµός της µορφής 4k + 3 (k ϕυσικός), να αποδείξετε ότι αν
x, y ∈ Z και p|x2 + y2, τότε p|x και p|y. (3η Προκριµατική Φάση 1996)

΄Ασκηση 5.34 Να αποδείξετε ότι εαν ο n είναι ακέραιος τότε και ο A =
n5

5
+
n3

3
+

7n

15
είναι

ακέραιος.

΄Ασκηση 5.35 (i) ΄Εστω a ακέραιος, u, v ϑετικοί ακέραιοι και m > 1 έτσι ώστε au ≡ 1
(mod m) και av ≡ 1 (mod m) τότε ad ≡ 1 (mod m), όπου d = (u, v).

(ii) Να δείξετε ότι εαν n|2n − 1 τότε n = 1.

΄Ασκηση 5.36 (i) Να αποδείξετε το αντίστροφο του ϑεωρήµατος Wilson: Εαν m > 1 και
ο m δεν είναι πρώτος, τότε (m− 1)! 6≡ −1 (mod m).

(ii) [Ισχυρότερο από το (i)] Εαν m > 4 σύνθετος τότε (m− 1)! ≡ 0 (mod m).

(iii) Να ϐρείτε όλους τους ακεραίους n > 1 που είναι τέτοιοι ώστε n(n+ 1)|(n− 1)!.

΄Ασκηση 5.37 Να δείξετε ότι για οποιοδήποτε πρώτο p και οποιοδήποτε ακέραιο a, ο αριθµός
ap + (p− 1)!a διαιρείται από το p.

΄Ασκηση 5.38 Να δείξετε ότι εαν οι αριθµοί n, n+ 2 είναι πρώτοι τότε

4 [(n− 1)! + 1] + n ≡ 0 (mod n(n+ 2)).
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΄Ασκηση 5.39 (Liouville 1856) Εαν ο p είναι κάποιος από τους πρώτους 2,3 ή 5 τότε ο
αριθµός (p − 1)! + 1 είναι τέλεια δύναµη πρώτου. Να δείξετε ότι αυτό δεν ισχύει για p > 5
δείχνοντας τα παρακάτω:

(i) Εαν p > 5 τότε (p− 1)2|(p− 1)!.

(ii) Εαν ο αριθµός (p− 1)! + 1 είναι τέλεια δύναµη πρώτου τότε είναι δύναµη του πρώτου
p (και όχι κάποιου τυχαίου).

(iii) Εαν (p − 1)! + 1 = pk για κάποιο ακέραιο k τότε p − 1|pk−1 + pk−2 + · · · + p + 1.
Αυτό µπορεί να συµβαίνει µόνο εαν p− 1|k και τότε η εξίσωση (p− 1)! + 1 = pk είναι
αδύνατη.

΄Ασκηση 5.40 (i) Να δείξετε ότι εαν ο αριθµός p είναι πρώτος και p 6 | a τότε ο αριθµός
bap−2 είναι λύση της ισοτιµίας ax ≡ b (mod p). Να χρησιµοποιήσετε αυτή την τεχνική
για να λύσετε την ισοτιµία 5x ≡ 4 (mod 17).

(ii) Προσαρµόστε την ιδέα του ερωτήµατος (i) ώστε να ϐρείτε τη λύση της ισοτιµίας ax ≡ b
(mod n) όταν (a, n) = 1 και το n δεν είναι απαραίτητα πρώτος αριθµός. Χρησιµοποι-
ήστε αυτό τον τρόπο για να λύσετε την ισοτιµία 5x ≡ 4 (mod 42).

΄Ασκηση 5.41 (i) Ας υποθέσουµε ότι (a,m) = 1 και n|tφ(m) + 1 για κάποιο ακέραιο
t. Να αποδείξετε ότι η ισοτιµία xn ≡ a (mod m) έχει µοναδική λύση την ak όπου

k =
tφ(m) + 1

n
.

(ii) Χρησιµοποιώντας το προηγούµενο ερώτηµα να λύσετε τις ισοτιµίες

• x11 ≡ 3 (mod 68),

• x13 ≡ 7 (mod 68),

• x23 ≡ 5 (mod 68).

΄Ασκηση 5.42 (i) Υποθέτουµε ότι οm είναι σύνθετος αλλά ότι am−1 ≡ 1 (mod m), όπου
a 6≡ 1 (mod m). Να κάνετε χρήση του ϑεωρήµατος Euler και της άσκησης 5.35(i) για
να δείξετε ότι ad ≡ 1 (mod m) για κάποιο κατάλληλο διαιρέτη d του n− 1.

(ii) Να κάνετε χρήση του προηγούµενου ερωτήµατος για να δείξετε ότι εαν υπάρχει a τέτοιο

ώστε am−1 ≡ 1 (mod m) αλλά a
m−1

p 6≡ 1 (mod m), για οποιοδήποτε πρώτο διαιρέτη
p του m− 1, τότε ο m είναι πρώτος.

΄Ασκηση 5.43 (i) Υποθέστε ότι a = 2kb όπου ο b είναι περιττός. Εαν φ(x) = a, να δείξετε
ότι ο x έχει το πολύ k διακεκριµένους περιττούς πρώτους παράγοντες.
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(ii) Να κάνετε χρήση του προηγούµενου ερωτήµατος για να χαρακτηρίσετε εκείνους τους
ακεραίους n για τους οποίους το φ(n) δεν είναι διαιρετό από το 4.

΄Ασκηση 5.44 (i) Να αποδείξετε ότι δεν υπάρχει ακέραιος n για τον οποίο φ(n) = 14.

(ii) Να αποδείξετε ότι δεν υπάρχει ακέραιος n τέτοιος ώστε φ(n) = 2 · 7k, όπου k ≥ 1
ακέραιος (χρησιµοποιήστε την άσκηση 5.43(ii) και µετά αποδείξτε ότι ο αριθµός 2·7k+1
δεν είναι ποτέ πρώτος).

(iii) Να ϐρείτε κι άλλες περιπτώσεις στις οποίες το διπλάσιο ενός περιττού αριθµού δεν
µπορεί να είναι ίσο µε το φ(n) για κάποιο ϕυσικό αριθµό n.

6 Ισοτιµίες

6.1 Ασκήσεις Α΄ Οµάδας

΄Ασκηση 6.1 Να ϐρεθεί το υπόλοιπο του 61987 µε το 37.

΄Ασκηση 6.2 Να αποδείξετε ότι δεν υπάρχουν ακέραιοι x, y τέτοιοι ώστε x2 − 5y2 = 2.

΄Ασκηση 6.3 Να ϐρεθεί το τελευταίο ψηφίο του αριθµού 777.

΄Ασκηση 6.4 Να δείξετε ότι κάθε χρόνος (κανονικός ή δίσεκτος) έχει πάντα τουλάχιστον
µία Τρίτη και 13.

΄Ασκηση 6.5 Να ϐρεθούν άπειροι ακέραιοι αριθµοί n τέτοιοι ώστε 7 | 2n + 27.

΄Ασκηση 6.6 Εάν k ϑετικός ακέραιος τότε να δείξετε ότι 2k − 5 6= 1 (mod 7).

΄Ασκηση 6.7 Να ϐρεθεί (το ελάχιστο ϑετικό) υπόλοιπο της διαίρεσης του αριθµού

1! + 2! + · · ·+ 100!

µε το 45.

΄Ασκηση 6.8 Να αποδείξετε ότι για εαν ο p ≥ 5 είναι πρώτος τότε ο αριθµός p2 + 2 είναι
σύνθετος.

΄Ασκηση 6.9 Να αποδείξετε ότι ο αριθµός 22n + 5 είναι σύνθετος για οποιοαδήποτε τιµή του
ϑετικού ακεραίου n.

΄Ασκηση 6.10 Να αποδείξετε ότι ο αριθµός n3 + 11n+ 1 δε διαιρείται από κανένα από τους
αριθµούς 2,3,5,7 για οποιοδήποτε ακέραιο n.
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6.2 Ασκήσεις Β΄ Οµάδας

΄Ασκηση 6.11 Να αποδείξετε ότι οι αριθµοί n(n−1) και (n+ 1)2 έχουν διαφορετικό άθροι-
σµα ψηφίων. (∆ιαγωνισµός «Ο Ευκλείδης» 1997)

΄Ασκηση 6.12 Εάν a ≡ b (mod n), να δείξετε ότι an ≡ bn (mod n2). Ισχύει το αντίστροφο
;

΄Ασκηση 6.13 Για κάθε ϑετικό ακέραιο n ορίζουµε an = 11 + 22 + 33 + · · · + nn. Να
αποδείξετε ότι υπάρχουν άπειρες τιµές του n για τις οποίες ο an είναι περιττός και σύνθετος
αριθµός.

΄Ασκηση 6.14 Υπάρχει Ϲεύγος ϕυσικών x και y για τους οποίους ισχύει :

(i) x3 + y4 = 22003 ;

(ii) x3 + y4 = 22005 ;

΄Ασκηση 6.15 Να αποδείξετε ότι δεν υπάρχουν ϱητοί αριθµοί x, y, z τέτοιοι ώστε

x2 + y2 + z2 + 3(x+ y + z) + 5 = 0.

΄Ασκηση 6.16 Για ποιες τιµές του λ το πολυώνυµο x3 + 1995x2 − 1994x + λ έχει και τις
τρεις ϱίζες του ακέραιες ; (∆ιαγωνισµός «Ο Αρχιµήδης» 1994)

΄Ασκηση 6.17 Να αποδείξετε ότι ο αριθµός n2 +n+9 δε διαιρείται µε το 25 για οποιοδήποτε
n ∈ Z.

΄Ασκηση 6.18 Να αποδείξετε ότι οποιοσδήποτε ακέραιος x ικανοποιεί τουλάχιστον µία από
τις ισοτιµίες x ≡ 0 (mod 2), x ≡ 0 (mod 3), x ≡ 1 (mod 4), x ≡ 3 (mod 8), x ≡ 7
(mod 12), x ≡ 23 (mod 24).

΄Ασκηση 6.19 Είναι το σύνολο {12, 22, 32, . . . ,m2} πλήρες σύστηµα υπολοίπων modm ;

΄Ασκηση 6.20 ΄Εστω p πρώτος. Να αποδείξετε ότι

(
2p

p

)
≡ 2 (mod p).

΄Ασκηση 6.21 ΄Εστω n ϑετικός ακέραιος µε n 6= 1, 2, 3, 4, 6. Να αποδείξετε ότι υπάρχουν
ακέραιοι a και b µε 1 < a < n− 1 και 1 < b < n− 1 τέτοιοι ώστε ab ≡ −1 (mod n).
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7 ∆ιοφαντικές Εξισώσεις

7.1 Ασκήσεις Α΄ Οµάδας

΄Ασκηση 7.1 Να λυθεί στους ακεραίους η εξίσωση 3x+ 5y = 2.

΄Ασκηση 7.2 Να λυθεί στους ακεραίους η εξίσωση 543312x+ 65340y = 1188.

΄Ασκηση 7.3 Υπάρχουν ϑετικοί ακέραιοι x, y τέτοιοι ώστε x3 = 2y + 15 ;

΄Ασκηση 7.4 Να προσδιορίσετε όλους τους ακεραίους x, y που ικανοποιούν την εξίσωση
x2 = y2 + 2y + 9.

΄Ασκηση 7.5 Να ϐρεθούν όλοι οι ϕυσικοί a, b, c ≥ 1 µε

1

ab
+

1

bc
+

1

ca
= 1.

΄Ασκηση 7.6 Αν x, y ακέραιοι µε 0 ≤ x, y ≤ 100, να λύσετε την εξίσωση

|x+ y − 2|+ |3x− 2y + 1|+ 3x− 2y + 1 = 0.

(∆ιαγωνισµός «Ο Θαλής» 1996)

΄Ασκηση 7.7 Να ϐρεθούν οι ϑετικές ακέραιες λύσεις της εξίσωσης x3 − y3 = xy + 61.
(Ολυµπιάδα Ρωσίας)

΄Ασκηση 7.8 Να λυθεί η εξίσωση p− x4 = 4 όπου p πρώτος και x ακέραιος.

7.2 Ασκήσεις Β΄ Οµάδας

΄Ασκηση 7.9 Να λυθεί στους ακεραίους η εξίσωση x2(y− 1) + y2(x− 1) = 1. (Ολυµπιάδα
Πολωνίας)

΄Ασκηση 7.10 Εαν p, q πρώτοι, να λύσετε την εξίσωση
1

x
+

1

y
=

1

pq
στους ϑετικούς ακεραί-

ους.

΄Ασκηση 7.11 Να ϐρεθούν τα Ϲεύγη ακεραίων x, y που ικανοποιούν την εξίσωση

x3 + y3 = (x+ y)2.

΄Ασκηση 7.12 Να λυθεί στους ϑετικούς ακεραίους η εξίσωση

1

x
+

1

y
+

1

z
=

3

5
.
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7.2 Ασκήσεις Β΄ Οµάδας Ασκησεις στη Θεωρια Αριθµων

΄Ασκηση 7.13 Να ϐρεθούν οι ϑετικοί ακέραιοι x, y, z που ικανοποιούν την εξίσωση(
1 +

1

x

)(
1 +

1

y

)(
1 +

1

z

)
= 2.

΄Ασκηση 7.14 Να δείξετε ότι η εξίσωση a2 + b2 = c2 + 3 έχει άπειρες ακέραιες λύσεις.

΄Ασκηση 7.15 Υπάρχουν λύσεις της εξίσωσης x!y! = z! στους ϕυσικούς x, y, z > 5 ;

΄Ασκηση 7.16 ∆ίνεται ο αριθµός x =
3
√

2 +
√

5 +
3
√

2−
√

5. Να εξετάσετε εάν είναι ϱητός.

΄Ασκηση 7.17 Να λυθεί στο σύνολο των ακεραίων x, y το σύστηµα των εξισώσεων{
x2 + y2 + z2 = 155, (1)
x+ y + z = 21, (2)

(∆ιαγωνισµος «Ο Ευκλείδης» 1996)

΄Ασκηση 7.18 Να λύσετε στους ϑετικούς ακεραίους x, y, z την εξίσωση 2x + 3y = z2.

΄Ασκηση 7.19 Να δείξετε ότι η εξίσωση

(x+ 1)2 + (x+ 2)2 + · · ·+ (x+ 2001)2 = y2

δεν έχει ακέραιες λύσεις.

΄Ασκηση 7.20 Να ϐρείτε όλα τα Ϲεύγη πρώτων αριθµών (p, q) που είναι τέτοια ώστε

p3 − q5 = (p+ q)2.

(Ολυµπιάδα Ρωσίας)

΄Ασκηση 7.21 Να δείξετε ότι η εξίσωση x5 − y2 = 4 δεν έχει ακέραια λύση. (ΒΜΟ 1998)

΄Ασκηση 7.22 Να ϐρεθούν όλοι οι πρώτοι αριθµοί p για τους οποίους το σύστηµα{
p+ 1 = 2x2, (1)
p2 + 1 = 2y2, (2)

έχει λύση στους ακεραίους x, y.

΄Ασκηση 7.23 Να δείξετε ότι εαν το n είναι ϑετικός ακέραιος τέτοιος ώστε η εξίσωση

x3 − 3xy2 + y3 = n

να έχει λύση στους ακεραίους (x, y), τότε έχει τουλάχιστον 3 λύσεις. Να δείξετε επίσης ότι
η εξίσωση δεν έχει ακέραια λύση όταν n = 2891. (ΙΜΟ 1982)

26



Ασκήσεις στη Θεωρία Αριθµών 7 ∆ιοφαντικές Εξισώσεις

΄Ασκηση 7.24 Να λύσετε στους ϑετικούς ακεραίους την εξίσωση 3x−5y = z2. (ΒΜΟ 2009)

΄Ασκηση 7.25 Να αποδείξετε ότι δεν υπάρχουν ακέραιοι x, y, z όχι όλοι µηδέν και τέτοιοι
ώστε να έχουµε x2 + y2 = 3z2.

΄Ασκηση 7.26 Να ϐρεθούν οι ϕυσικοί αριθµοί x, y που είναι τέτοιοι ώστε

1! + 2! + 3! + · · ·+ x! = y2.

΄Ασκηση 7.27 Αν οι συντελεστές της εξίσωσης ax2 + bx + c = 0, a 6= 0 είναι ακέραιοι
περιττοί αριθµοί, να δείξετε ότι οι ϱίζες της εξίσωσης δεν είναι ϱητοί αριθµοί.

΄Ασκηση 7.28 Να προσδιορίσετε τις ακέραιες λύσεις (αν υπάρχουν) της εξίσωσης

14x12 − 11y12 + 3z12 − 8w12 = 19971996.

(1η Προκριµατική Φάση 1997)

΄Ασκηση 7.29 Να αποδείξετε ότι :

(i) Υπάρχουν ακέραιοι a, b, c που είναι τέτοιοι ώστε a2 + b2 − 8c = 9.

(ii) ∆εν υπάρχουν ακέραιοι a, b, c που είναι τέτοιοι ώστε a2 + b2 − 8c = 6.

(2η Προκριµατική Φάση 1997)

΄Ασκηση 7.30 Να ϐρεθούν όλες οι ακέραιες λύσεις της εξίσωσης

13

x2
+

1996

y2
=

z

1997
.

(∆ιαγωνισµός «Ο Αρχιµήδης» 1997)
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Μάθηµα Θεωρίας Αριθµών

Ε.Μ.Ε

1. Γράφουµε στις σειρά τους διψήφιους αριθµούς από το 19 ως το 80. Ο αριθµός
που προκύπτει διαιρείται µε 1980;

2. Να εξετασθεί αν έχει λύση η εξίσωση

p2 + q3 = r4

όταν οι p, q, r είναι πρώτοι αριθµοί.

3. Συµβολίζουµε µε S(n) το άθροισµα των ψηφίων του ϑετικού ακεραίου n. Να
ϐρείτε ϕυσικούς αριθµούς n, m τέτοιους ώστε

n + S(n) = 1980 και m + S(m) = 2013.

4. ΄Ενα σύνολο A αποτελείται από ακεραίους αριθµούς και έχει ως ελάχιστο στοιχείο
το 1 και ως µέγιστο το 100. Κάθε στοιχείο του A, εκτός του 1, είναι ίσο µε το άθροισµα
δύο (µπορεί και ίσων) αριθµών οι οποίοι ανήκουν στο A. Μεταξύ όλων των συνόλων A που
ικανοποιούν τις παραπάνω συνθήκες να ϐρεθεί αυτό µε το ελάχιστο πλήθος στοιχείων.

5. Να αποδειχθεί ότι ένας ϕυσικός δεν µπορεί να γράφεται ταυτόχρονα ως γινόµενο
δύο διαδοχικών ϕυσικών αλλά και ως γινόµενο τεσσάρων διαδοχικών ϕυσικών.

6. Να ϐρεθούν όλοι οι ϕυσικοί αριθµοί που είναι ίσοι µε το τετράγωνο του πλήθους
των διαιρετών τους.

7. Για ποιες τιµές του ϕυσικού αριθµού n ο αριθµός

A = 32n+1 − 22n+1 − 6n

είναι σύνθετος ;

8. Να λυθεί στους ϕυσικούς η εξίσωση

x3 − y3 = xy + 61.

9. Το γινόµενο n ακεραίων αριθµών είναι ίσο µε n ενώ το άθροισµά τους είναι ίσο
µε µηδέν. Να αποδειχθεί ότι 4 | n.

10. Αν οι x, y είναι διαφορετικοί µεταξύ τους ϑετικοί ακέραιοι, να αποδειχθεί ότι ο
αριθµός

A =
(x + y)2

x3 + xy2 − x2y − y3

δεν είναι ακέραιος.
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Λύσεις

1. Γράφουµε αρχικά 1980 = 22 ·32 ·5 ·11. Ο δοσµένος αριθµός προφανώς διαιρείται µε
το 4, αφού το τελευταίο διψήφιό του τµήµα διαιρείται µε 4. Επιπλέον διαιρείται µε 5.
Θα χρησιµοποιήσουµε ότι ένας αριθµός διαιρείται µε το 9 και το 11 αν το άθροισµα των
διψήφιων τµηµάτων του διαιρούνται µε το 9 και το 11 (εξηγήστε γιατί αρκεί και αυτό ;).
΄Εχουµε:

19+20+ . . .+80 = (1+2+ . . .+80)− (1+2+ . . .+18) =
80 · 81

2
−

18 · 19
2

= 9 ·11 ·31.

και το Ϲητούµενο έπεται.

2. Γράφουµε την εξίσωση στη µορφή

q3 = r4 − p2 = (r2 − p)(r2 + p).

΄Οµως r2 + p > r2 − p οπότε έχουµε τις εξής περιπτώσεις :

• r2 − p = q και r2 + p = q2. Τότε η δεύτερη δίνει

p = q2 − r2 = (q − r)(q + r),

οπότε αφού q + r > q − r ϑα έχουµε ότι q + r = p και q − r = 1. Η δεύτερη δίνει ότι
q = 3, r = 2 που όµως δίνει άτοπο στην αρχική.

• r2 − p = 1 και r2 + p = q3. Τότε η πρώτη δίνει

p = (r − 1)(r + 1)

οπότε r + 1 = p και r − 1 = 1 οπότε r = 2, p = 3 που πάλι δίνει άτοπο.

3. Θα ϐρούµε ένα n ώστε να ισχύει το πρώτο και η διαδικασία για το δεύτερο είναι
παρόµοια. Το S(n) παίρνει τη µεγαλύτερη τιµή όταν ο αριθµός έχει όσο το δυνατόν πιο
πολλά 9. Επιπλέον 1000 < n < 1980. Οπότε η µέγιστη τιµή λαµβάνεται ότι n = 1979
όπου τότε S(n) = 26. Αφού n + S(n) = 1980, ϑα πρέπει n ≥ 1980 − 26 = 1954. Με
δοκιµές τώρα ϐρίσκουµε ότι n = 1962.
΄Οµοια ϐρίσκουµε m = 2010.

4. ΄Εστω ότι οι δεδοµένοι αριθµοί είναι οι

k1 = 1 ≤ k2 ≤ . . . ≤ kn = 100.

Από τη συνθήκη ότι κάθε αριθµός γράφεται σαν άθροισµα δύο άλλων έχουµε

2ki ≥ ki+1,
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από όπου
ki ≤ 2i−1 για κάθε i = 1, 2, . . . , n.

Ειδικότερα έχουµε ότι 2n−1 ≥ 100 από όπου n ≥ 8. Αν όµως n = 8 τότε εύκολα
ϐλέπουµε ότι k7 = 50 και 2k5 = 25 που είναι άτοπο. ΄Αρα n ≥ 9. Παράδειγµα σε αυτή
την περίπτωση είναι το σύνολο

{1, 2, 3, 5, 10, 20, 25, 50, 10}.

5. Θέλουµε ουσιαστικά να δείξουµε ότι η εξίσωση

(1) n(n + 1) = m(m + 1)(m + 2)(m + 3),

είναι αδύνατη στους ϕυσικούς. Πράγµατι γράφουµε

m(m + 1)(m + 2)(m + 3) = (m2 + 3m)(m2 + 3m + 2) = (m2 + 3m)2 + 2(m2 + 3m),

οπότε προσθέτοντας 1 και στα δύο µέλη της (1) παίρνουµε

n2 + n + 1 = (m2 + 3m + 1)2.

΄Οµως ο αριθµός n2 + n + 1 δεν είναι ποτέ τέλειο τετράγωνο όταν ο n είναι ϑετικός
ακέραιος αφού

n2 < n2 + n + 1 < (n + 1)2.

6. ΄Εστω ότι ο αριθµός n = m2 έχει m > 1 διαφορετικούς διαιρέτες. Τότε επειδή
είναι τέλειο τετράγωνο, το πλήθος των διαιρετών του είναι περιττό, άρα m = 2k + 1. Τότε
όµως ο n είναι περιττός και έχει k διαιρέτες µικρότερους από m. ΄Επεται ότι ο n έχει
διαιρέτη κάθε περιττό µικρότερο του 2k + 1. Οπότε

2k − 1 | n = (2k + 1)2 = 4 + (2k − 1)(2k + 3).

΄Επεται ότι 2k − 1 | 4 άρα k = 1 και n = 9.

7. Θα ϑέσουµε για ευκολία

3n = a και 2n = b.

Τότε η παράσταση γράφεται

A = 3a2 − 2b2 − ab

= 2(a − b)(a + b) + a(a − b)

= (a − b)(3a + 2b)

= (3n − 2n)(3n+1 + 2n+1)

3



Οπότε ο αριθµός A είναι σύνθετος εκτός της περίπτωσης n = 1.

8. Θέλοντας να χρησιµοποιήσουµε την ταυτότητα Euler πολλαπλασιάζουµε µε 27
και αφαιρούµε 1 και από τα δύο µέλη οπότε η εξίσωση γράφεται

(3x)3 + (−3y)3 + (−1)3 − 3(3x)(−3y)(−1) = 1642.

Κάνοντας χρήση της ταυτότητας του Euler η παραπάνω γράφεται ως

(3x − 3y − 1)(9x2 + 9y2 + 1 + 9xy + 3x − 3y) = 2 · 823.

Ο όρος της δεύτερης παρένθεσης είναι µεγαλύτερος από αυτόν της πρώτης και επίσης
ο πρώτος όρος δεν µπορεί να ισούται µε 1, άρα έχουµε

3x − 3y − 1 = 2 και 9x2 + 9y2 + 1 + 9xy + 3x − 3y = 823.

Εύκολα λύνοντας το παραπάνω σύστηµα (µε αντικατάσταση) ϐρίσκουµε ότι λύση είναι
η (x, y) = (6, 5).

9. Αν όλοι οι αριθµοί είναι περιττοί τότε πρέπει n περιττός (από το γινόµενο), αλλά
τότε έχουµε περιττό πλήθος περιττών ίσο µε 0, άτοπο.
Αν ακριβώς ένας είναι άρτιος, τότε n άρτιος οπότε οι υπόλοιποι n−1 είναι περιττοί και το
άθροισµά τους είναι επίσης περιττό γιατί το πλήθος τους, που είναι n−1, είναι περιττός.
Και πάλι η σχέση µε το άθροισµα δίνει άτοπο, άρα 4 | n.

10. Για τον παρονοµαστή γράφουµε

x3 + xy2 − x2y − y3 = (x − y)(x2 + y2).

Αφού ο A είναι ακέραιος, ϑα πρέπει

x2 + y2 | (x + y)2 = x2 + y2 + 2xy.

Οπότε
x2 + y2 | 2xy.

΄Οµως ξέρουµε ότι
x2 + y2 ≥ 2xy

οπότε πρέπει x = y, που είναι άτοπο.

Σιλουανός Μπραζιτίκος
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Μάθηµα Θεωρίας Αριθµών

Ε.Μ.Ε

1. Να αποδειχθεί ότι κάθε ϑετικός ακέραιος αριθµός n ≥ 6, µπορεί να γραφεί στη µορφή

n = a2 + b2 − c2,

όπου οι a, b, c είναι ϑετικοί ακέραιοι.

2. Να αποδειχθεί ότι για κάθε ακέραιο n ≥ 2 υπάρχει ένας ϑετικός ακέραιος ο οποίος µπορεί
να γραφεί ως άθροισµα k τέλειων τετραγώνων για κάθε 2 ≤ k ≤ n.

3. Θεωρούµε έναν ϕυσικό αριθµό n > 1 και έναν πρώτο αριθµό p που είναι τέτοιος ώστε

n | p − 1 και p | n3 − 1.

Να αποδειχθεί ότι ο 4p − 3 είναι τέλειο τετράγωνο.

4. Να αποδειχθεί ότι υπάρχουν άπειροι ϑετικοί ακέραιοι n τέτοιοι ώστε

S(3n) ≥ S(3n+1),

όπου µε S(a) συµβολίζουµε το άθροισµα των ψηφίων του a στη δεκαδική αναπαράσταση.

5. Να αποδειχθεί ότι στο επίπεδο δεν µπορούµε να ϐρούµε ένα άπειρο σύνολο µη συνευ-
ϑειακών σηµείων ώστε ανά δύο τα σήµεια να έχουν ακέραια απόσταση.

6. Να αποδειχεί ότι κάθε ϕυσικός αριθµός µπορεί να γραφεί ως άθροισµα αριθµών της
µορφής 2a3b ώστε κανείς προσθετέος να µην διαιρεί κάποιον άλλο.

7. Να ϐρεθούν όλοι οι ϑετικοί ακέραιοι n ώστε να υπάρχουν k ≥ 2 ϑετικοί ϱητοί αριθµοί
a1, a2, . . . , ak που να ικανοποιούν

a1 + . . . + ak = a1 . . . ak = n.

8. Να ϐρεθούν όλες οι συναρτήσεις f : N∗ 7→ N∗ που είναι τέτοιες ώστε

m2 + f (n) | (f (m))2 + n,

για κάθε m, n ∈ N∗.

9. Να ϐρεθούν όλες οι 1-1 συναρτήσεις f : N 7→ N που είναι τέτοιες ώστε

f (f (n)) ≤
n + f (n)

2
,

για κάθε n ∈ N.
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1. Αρχικά παρατηρούµε ότι κάθε αριθµός που δεν είναι της µορφής 4k+2 µπορεί να γραφεί
στη µορφή xy όπου οι x, y είναι είτε και οι δύο άρτιοι είτε και οι δύο περιττοί. Οπότε κάθε
τέτοιος αριθµός γράφεται στη µορφή

xy =
(x + y

2

)2
−

(x − y

2

)2
.

Παίρνουµε τώρα έναν τυχαίο ϕυσικό n ≥ 6. Αν αυτός δεν είναι της µορφής 4k + 3 τότε ο n − 1
δεν είναι της µορφής 4k + 2 οπότε από τα παραπάνω ϑα έχουµε ότι ϑα υπάρχουν x, y που είναι
και οι δύο άρτιοι ή και οι δύο περιττοί, ώστε

n − 1 =
(x + y

2

)2
−

(x − y

2

)2
,

οπότε
n = 1 +

(x + y

2

)2
−

(x − y

2

)2
,

που είναι το Ϲητούµενο.
Αν τώρα ο n είναι της µορφής 4k + 3 τότε ο αριθµός p − 22 δεν είναι της µορφής 4k + 2 άρα ϑα
υπάρχουν x, y που είναι και οι δύο άρτιοι ή και οι δύο περιττοί, ώστε

n − 22 =

(x + y

2

)2
−

(x − y

2

)2
,

οπότε
n = 22 +

(x + y

2

)2
−

(x − y

2

)2
,

που είναι το Ϲητούµενο.

2. Θα χρησιµοποιήσουµε επαγωγή στο n. ΄Οταν n = 2 τότε παίρνουµε επιλέγουµε για
παράδειγµα τον αριθµό 25. Αυτός είναι τέλειο τετράγωνο και γράφεται και σαν άθροισµα δύο
τετραγώνων αφού

25 = 52 = 32 + 42.

Ας υποθέσουµε τώρα ότι για τον n−1 υπάρχει ϕυσικός x που γράφεται ως άθροισµα 2, 3, . . . , n−1
τετραγώνων. Από την άσκηση 1, ϑα έχουµε ότι ο x γράφεται στη µορφή

x = a2 + b2 − c2.

Θεωρούµε τον αριθµό
A = x + c2.

Τότε αυτός είναι άθροισµα 3, 4, . . . , n τετραγώνων, αλλά επιπλέον A = a2+b2 οπότε ολοκληρώνε-
ται η επαγωγή.

3. ΄Εχουµε ότι
p | n3 − 1 = (n − 1)(n2 + n + 1).

Από την πρώτη σχέση όµως έχουµε ότι n ≤ p − 1, άρα αναγκαστικά

(1) p | n2 + n + 1.

Και πάλι από την πρώτη σχέση έχουµε ότι υπάρχει ϑετικός ακέραιος k ώστε

p = nk + 1.
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Αντικαθιστώντας στην (1) έχουµε ότι

nk + 1 | n2 + n + 1.

΄Επεται ότι
nk + 1 | kn2 + kn + k = (kn + 1)(n + 1) − n + k − 1,

από όπου συµπεραίνουµε ότι
nk + 1 | k − n − 1.

΄Οµως είναι εύκολο να δούµε ότι kn + 1 > k − n − 1, οπότε αναγκαστικά πρέπει

k = n + 1.

Τότε
4p − 3 = 4n(n + 1) + 1 = (2n + 1)2,

και έχουµε το Ϲητούµενο.

4. Υποθέτουµε το αντίθετο. Τότε υπάρχει ένας ϕυσικός N ώστε για κάθε n ≥ N, να έχουµε

S(3n+1) > S(3n).

΄Οµως για n ≥ 2, έχουµε ότι
9 | S(3n+1) και 9 | S(3n),

οπότε
S(3n+1) ≥ S(3n) + 9.

Εφαρµόζοντας την τελευταία σχέση διαδοχικά παίρνουµε ότι για κάθε n ≥ N,

S(3n+1) ≥ S(3N ) + 9(n − N + 1).

Το πλήθος των ψηφίων του 3n+1 είναι το πολύ

log10 3n+1 + 1.

Καθένα από αυτά τα ψηφία είναι µικρότερο ή ίσο του 9, άρα

S(3n+1) ≤ 9
(
log10 3n+1 + 1

)
.

Οπότε ϑα έχουµε ότι
9
(
log10 3n+1 + 1

)
≥ 9(n − N + 1),

ή ισοδύναµα
N + log10 3 ≥ n

(
1 − log10 3

)
.

Η τελευταία όµως δίνει άτοπο για n αρκετά µεγάλο.

5. Θεωρούµε τρία µη συνευθειακά σηµεία A, B, C από το σύνολο και έστω P άλλο ένα σηµείο.
Θέτουµε

k = max{AB, BC}.

Τότε σύµφωνα µε τη συνθήκη ο k είναι ϑετικός ακέραιος και επιπλέον από την τριγωνική
ανισότητα έχουµε

|PA − PB| ≤ k και |PB − PC| ≤ k.
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Οι παραπάνω απόλυτες τιµές είναι ϑετικοί ακέραιοι εποµένως µπορούν να πάρουν το πολύ k+1
τιµές οι καθεµιά. ΄Επεται ότι το P µπορεί να ανήκει σε k + 1 υπερβολές που ορίζονται από τα
A, B και σε k+1 υπερβολές που ορίζονται από τα B, C. Οπότε για το P έχουν ως δυνατές επιλογές
τα σηµεία τοµής αυτών των υπερβολών τα οποία όµως είναι το πολύ 4(k + 1)2 οπότε δεν µπορεί
το σύνολο να έχει άπειρα στοιχεία.

6. Θα δουλέψουµε µε ισχυρή επαγωγή στο n. Για n = 1 γράφουµε 1 = 20 · 30 και για n = 2,
γράφουµε 2 = 21 ·30. Υποθέτουµε ότι ισχύει για κάθε ακέραιο µικρότερο του n και ϑα δείξουµε
τον ισχυρισµό για το n.

• Αν n άρτιος τότε ο n/2 είναι ακέραιος µικρότερος από τον n άρα γράφεται στη µορφή

n/2 =
∑

2i3j,

όπου κανείς όρος δεν διαιρεί κάποιον άλλο, οπότε

n =
∑

2i+13j,

όπου κανείς όρος δεν διαιρεί κάποιον άλλο.

• Αν n περιττός τότε ϑεωρούµε τον ακέραιο k για τον οποίο ισχύει 3k ≤ n < 3n+1. Θεωρούµε
τον αριθµό n − 3k/2. Αυτός είναι ακέραιος, άρα από την επαγωγική υπόθεση γράφεται
στη µορφή

n − 3k/2 =
∑

2i3j,

όπου κανείς όρος δεν διαιρεί κάποιον άλλο, οπότε

n =
∑

2i+13j + 3k ,

όπου κανείς όρος δεν διαιρεί τον άλλο, αφού για τους πρώτους το έχουµε από την επαγωγή
και επίσης όλοι πλέον είναι άρτιοι εκτός από τον τελευταίο και 3k > 3i , οπότε η επαγωγή
ολοκληρώνεται.

7.

• Θεωρούµε πρώτα την περίπτωση που ο n έιναι σύνθετος. Τώρα γράφεται στη µορφή
n = p1p2. Επιπλέον παρατηρούµε ότι p1 + p2 ≤ n οπότε µπορούµε να επιλέξουµε a1 =

p1, a2 = p2 και οι υπόλοιποι να είναι (n−p1−p2) άσσοι. Στην περίπτωση που p1+p2 = n,
τότε n = 4 όπου παίρνουµε p1 = p2 = 2.

• Στην περίπτωση που ο n είναι πρώτος, επιλέγουµε

a1 =
n

2
, a2 = 4, a3 =

1
2

και τα υπόλοιπα ak ίσα µε 1. Οι µόνοι αριθµοί που δεν καλύπτουµε σε αυτή την περίπτωση
είναι αυτοί για τους οποίους ισχύει

n

2
+ 4 +

1
2

> n =⇒ n < 9.

Οπότε µένει να εξετάσουµε ξεχωριστά τους αριθµούς

n = 1, 2, 3, 5, 7.
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• Για n = 1, ϑεωρούµε a1a2 . . . ak = 1. Τότε από την ανισότητα AM-GM, έχουµε

a1 + a2 + . . . + ak ≥ k
k√1 > 1

για k ≥ 2. Εποµένως η περίπτωση n = 1 είναι αδύνατη.

• Αν n = 2, ϑεωρούµε a1a2 . . . ak = 2. ΄Οµοια µε παραπάνω έχουµε

a1 + a2 + . . . ≥ k
k√2 > 2

για k ≥ 2, οπότε και αυτή η περίπτωση είναι αδύνατη.

• Αν n = 3, ϑεωρούµε a1a2 . . . ak = 3. ΄Οµοια µε πριν

a1 + a2 + . . . ≥ k
k√3 > 3.

για k ≥ 2. Οπότε και αυτή η περίπτωση είναι αδύνατη.

• Αν n = 5, τότε δουλεύοντας όµοια µε παραπάνω µένει να ελέγξουµε µόνο την περίπτωση
k = 2. Τότε a1 + a2 = 5 και a1a2 = 5. Αυτό το σύστηµα όµως δεν έχει λύσεις άρα και η
περίπτωση n = 5 είναι αδύνατη.

• Αν n = 7, τότε µπορούµε να επιλέξουµε τους αριθµούς

a1 =
9
2

, a2 =
4
3

, a3 =
7
6

.

Οπότε ο n µπορεί να είναι οποιοσδήποτε ϑετικός ακέραιος µεγαλύτερος του 3 µε µόνη εξαίρεση
το 5.

8. Θέτουµε αρχικά όπου n και m το 1 και παίρνουµε

f (1) + 1 | f (1)2 + 1 = f (1) (f (1) + 1) − f (1) + 1,

οπότε
f (1) + 1 | f (1) − 1 = f (1) + 1 − 2

άρα
f (1) + 1 | 2

οπότε f (1) = 1. Θέτοντας τώρα όπου m το 1 παίρνουµε

1 + f (n) | 1 + n

από όπου

(2) f (n) ≤ n.

΄Οµως αν ϑέσουµε όπου n το 1 παίρνουµε

m2 + 1 ≤ f 2(m) + 1

από όπου

(3) m2 ≤ f 2(m) =⇒ m ≤ f (m).
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Από τις (2) και (3) έχουµε ότι f (n) = n για κάθε ϑετικό ακέραιο n.

9. ∆είχνουµε πρώτα ότι δεν υπάρχει ϕυσικός n ώστε f (n) < n.
Πράγµατι αν κάτι τέτοιο ισχύει τότε από την αρχική παίρνουµε

f (f (n)) <
n + n

2
= n.

Επαγωγικά δείχνουµε ότι

(4) f (k)(n) < n

για κάθε ϑετικό ακέραιο k, όπου µε
f (k)(n)

συµβολίζουµε την k σύνθεση της f µε τον εαυτό της. ΄Επεται ότι ϑα υπάρχουν δύο ϑετικοί
ακέραιοι k1 > k2 ώστε

f (k1)(n) = f (k2)(n).

Τότε λόγω του ότι η f είναι 1-1, ϑα έχουµε

f (k1−k2)(n) = n,

το οποίο όµως είναι άτοπο λόγω της (4). Εποµένως

f (n) ≥ n

για κάθε ϕυσικό αριθµό n. Τότε η αρχική δίνει

f (n) ≤ f (f (n)) ≤
n + f (n)

2
,

από όπου
f (n) ≤ n

για κάθε ϕυσικό αριθµό n. ΄Επεται ότι f (n) = n.

Σιλουανός Μπραζιτίκος
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