
 ΧΡΗΣΤΟΣ ΜΑΒΟΓΛΟΥ - ΕΠΑΛ ΑΛΙΒΕΡΙΟΥ 1

ΧΡΗΣΤΟΣ ΜΑΒΟΓΛΟΥ

Εμβέλεια
Μεταβλητών (Scope)
& Λίστες

Local vs Global

 ΧΡΗΣΤΟΣ ΜΑΒΟΓΛΟΥ - ΕΠΑΛ ΑΛΙΒΕΡΙΟΥ 2

Python 2: Εμβέλεια Μεταβλητών (Scope) & Λίστες

1. Θεωρητικό Υπόβαθρο: Local vs Global

Στην Python, η "εμβέλεια" (scope) καθορίζει πού είναι ορατή μια μεταβλητή.

• Global (Καθολική): Μια μεταβλητή που ορίζεται στο κυρίως σώμα του
προγράμματος (έξω από συναρτήσεις), είναι ορατή παντού.

• Local (Τοπική): Μια μεταβλητή που ορίζεται μέσα σε μια συνάρτηση. Ζει
μόνο όσο τρέχει η συνάρτηση και χάνεται μετά.

2. Απλές Μεταβλητές (Integer, Float, String, Boolean)

Integer, Float, String, Boolean είναι Immutable (Αμετάβλητα).

Περίπτωση Α: Ανάγνωση (Reading)

Μπορούμε να δούμε την τιμή μιας global μεταβλητής μέσα σε συνάρτηση χωρίς
πρόβλημα.

Python

x = 10 #x is a Global variable

def show_x():

 print "Μέσα στη συνάρτηση:", x # Βλέπει την Global

show_x()

Έξοδος:

Μέσα στη συνάρτηση: 10

 ΧΡΗΣΤΟΣ ΜΑΒΟΓΛΟΥ - ΕΠΑΛ ΑΛΙΒΕΡΙΟΥ 3

Περίπτωση Β: Τροποποίηση (Writing / Shadowing)

Αν προσπαθήσουμε να αλλάξουμε την τιμή (x = ...) μέσα στη συνάρτηση, η Python
δημιουργεί αυτόματα μια νέα τοπική μεταβλητή με το ίδιο όνομα. Η Global x μένει
ανέπαφη.

Python

x = 10 # Global

def change_x():

 x = 5 # Δημιουργείται ΝΕΑ τοπική μεταβλητή 'x'

 print "Local x:", x

change_x()

print "Global x:", x

Έξοδος:

Local x: 5

Global x: 10 <-- Η αρχική δεν άλλαξε!

 ΧΡΗΣΤΟΣ ΜΑΒΟΓΛΟΥ - ΕΠΑΛ ΑΛΙΒΕΡΙΟΥ 4

Περίπτωση Γ: Η εντολή global μέσα στη συνάρτηση

Αν θέλουμε οπωσδήποτε να αλλάξουμε την έξω μεταβλητή, πρέπει να το
δηλώσουμε.

count = 0

def increment():

 global count # "Πάρε την έξω μεταβλητή, μην φτιάξεις

τοπική"

 count = count + 1

increment()

print count

Έξοδος: 1

 ΧΡΗΣΤΟΣ ΜΑΒΟΓΛΟΥ - ΕΠΑΛ ΑΛΙΒΕΡΙΟΥ 5

3. Λίστες: Ο Κανόνας της "Αναφοράς"

Οι λίστες συμπεριφέρονται διαφορετικά γιατί είναι Mutable (μεταβαλλόμενες).
Όταν περνάμε μια λίστα σε συνάρτηση, περνάμε την "αναφορά" (reference) στη
μνήμη.

Κανόνας:

1. Αν αλλάξουμε τα περιεχόμενα της λίστας (append, pop, list[0]=...), η
αλλαγή φαίνεται παντού.

2. Αν κάνουμε νέα ανάθεση στη λίστα (list = ...), σπάμε τον δεσμό και
φτιάχνουμε τοπική λίστα.

Παράδειγμα 1: Αλλαγή Περιεχομένου (Επηρεάζει την Global)

numbers = [1, 2, 3]

def add_number(lista):

 lista.append(4)

 lista[0] = 99

add_number(numbers)

print numbers

Έξοδος: [99, 2, 3, 4] <-- Η λίστα άλλαξε μόνιμα!

Σημείωση: Εδώ ΔΕΝ χρειάζεται η εντολή global.

 ΧΡΗΣΤΟΣ ΜΑΒΟΓΛΟΥ - ΕΠΑΛ ΑΛΙΒΕΡΙΟΥ 6

Παράδειγμα 2: Νέα Ανάθεση (ΔΕΝ επηρεάζει την Global)

numbers = [1, 2, 3]

def reset_list(lista):

 lista = [] # Το '=' φτιάχνει νέα τοπική μεταβλητή

 lista.append(5) # Προσθέτει στη νέα τοπική λίστα

 print "Μέσα:", lista

reset_list(numbers)

print "Έξω:", numbers

Έξοδος:

Μέσα: [5]

Έξω: [1, 2, 3] <-- Η αρχική λίστα έμεινε ανέπαφη

4. Μεθοδολογία Σκέψης

Όταν βλέπετε κώδικα, κάντε τις εξής ερωτήσεις:

1. Είναι απλή μεταβλητή (integer, float, boolean, string);

o Υπάρχει global x στην αρχή της συνάρτησης;

▪ ΝΑΙ: Αλλάζει η έξω μεταβλητή.

▪ ΟΧΙ: Αν υπάρχει x = ..., είναι νέα τοπική μεταβλητή.

2. Είναι Λίστα;

o Χρησιμοποιούμε μεθόδους (.append(), .pop()) ή L[0]=...);

▪ ΝΑΙ: Η αλλαγή είναι μόνιμη στην Global λίστα.

o Χρησιμοποιούμε το ίσον (L = [...] ή L = []);

▪ ΝΑΙ: Δημιουργείται νέα τοπική λίστα, η Global δεν αλλάζει.

 ΧΡΗΣΤΟΣ ΜΑΒΟΓΛΟΥ - ΕΠΑΛ ΑΛΙΒΕΡΙΟΥ 7

Ασκήσεις

Άσκηση 1: Η "παγίδα" της τοπικής μεταβλητής

x = 50

def alage_timi():

 x = 100

 print "Inside:", x

alage_timi()

print "Outside:", x

Ερώτηση: Τι θα τυπωθεί;

Άσκηση 2: Η εντολή global

score = 0

def kerdises():

 global score

 score = 10

kerdises()

print score

Ερώτηση: Τι θα τυπώσει το πρόγραμμα;

 ΧΡΗΣΤΟΣ ΜΑΒΟΓΛΟΥ - ΕΠΑΛ ΑΛΙΒΕΡΙΟΥ 8

Άσκηση 3: Λίστα και .append()

noumera = [1, 2]

def prosthiki(lista):

 lista.append(3)

prosthiki(noumera)

print noumera

Ερώτηση: Η λίστα noumera άλλαξε ή έμεινε ίδια;

Άσκηση 4: Λίστα και το σύμβολο =

colors = ["red", "blue"]

def reset_colors(lista):

 lista = ["green", "yellow"]

 lista.append("black")

reset_colors(colors)

print colors

Ερώτηση: Τι περιέχει τελικά η λίστα colors;

 ΧΡΗΣΤΟΣ ΜΑΒΟΓΛΟΥ - ΕΠΑΛ ΑΛΙΒΕΡΙΟΥ 9

Άσκηση 5: Ανάγνωση vs Εγγραφή

a = 5

def praxis():

 y = a + 5

 print y

praxis()

print a

Ερώτηση: Τι θα τυπώσει η εντολή print a στο τέλος;

 ΧΡΗΣΤΟΣ ΜΑΒΟΓΛΟΥ - ΕΠΑΛ ΑΛΙΒΕΡΙΟΥ 10

Μεταβλητή ή λίστα δίνεται ως παράμετρος.

Στην Python, όταν περνάς μια μεταβλητή ως παράμετρο σε συνάρτηση, δεν περνάς
την ίδια τη μεταβλητή (το κουτί), αλλά μια αναφορά στο αντικείμενο (ένα
"καρτελάκι" που δείχνει την τιμή στη μνήμη).

1. Αμετάβλητοι Τύποι – Immutable (Integer, String, Float, Boolean)

Όταν περνάς έναν έναν αμετάβλητο τύπο ως παράμετρο, η συνάρτηση φτιάχνει
ένα τοπικό όνομα που δείχνει στην ίδια τιμή.

Αν προσπαθήσεις να αλλάξεις την τιμή μέσα στη συνάρτηση, η Python αναγκαστικά
φτιάχνει ένα νέο αντικείμενο και βάζει το τοπικό όνομα να δείχνει εκεί.

Λειτουργεί σαν "Φωτοτυπία". Η συνάρτηση παίρνει την τιμή, αλλά ό,τι αλλαγή και
να κάνει στην παράμετρο, η αρχική μεταβλητή έξω δεν επηρεάζεται.

Συμπέρασμα: Η έξω απλή μεταβλητή δεν αλλάζει ποτέ μέσα στη συνάρτηση
(εκτός και αν έχει δηλωθεί global).

def change_number(x):

 print "Inside (before):", x

 x = 999

 print "Inside (after):", x

a = 10

change_number(a)

print "Outside:", a

 ΧΡΗΣΤΟΣ ΜΑΒΟΓΛΟΥ - ΕΠΑΛ ΑΛΙΒΕΡΙΟΥ 11

Κατάσταση 1:

def change_number(x):

 …

a = 10

change_number(a)

…

Κατάσταση 2:

def change_number(x):

 …

 x = 999

 …

a = 10

change_number(a)

…

 ΧΡΗΣΤΟΣ ΜΑΒΟΓΛΟΥ - ΕΠΑΛ ΑΛΙΒΕΡΙΟΥ 12

2. Μεταβλητοί Τύποι - Immutable (Λίστες)

 Όταν περνάει μια λίστα, η παράμετρος (τοπικό όνομα) δείχνει στην ίδια ακριβώς
λίστα στη μνήμη με την εξωτερική μεταβλητή.

Λειτουργεί σαν "Κλειδί Θυρίδας". Δίνουμε στη συνάρτηση πρόσβαση στην ίδια
λίστα μνήμης.

1. Τροποποίηση (append): Η συνάρτηση βάζει πράγματα στη θυρίδα μας. Η
αλλαγή μένει.

2. Ανάθεση (=): Η συνάρτηση πετάει το κλειδί μας και φτιάχνει δική της
θυρίδα. Η αλλαγή ΔΕΝ μένει.

Έχουμε δύο σενάρια:

Α. Τροποποίηση (Mutation) -> Αλλάζει και η έξω!
Αν χρησιμοποιήσετε εντολές που αλλάζουν τα περιεχόμενα της λίστας:
(.append(), .pop(), L[0]=...), τότε επειδή και τα δύο ονόματα δείχνουν την ίδια
λίστα, η αλλαγή φαίνεται και έξω.

def add_item(my_list):

 my_list.append("New")

data = [1, 2]

add_item(data)

print data

Τυπώνει: [1, 2, 'New'] <-- ΑΛΛΑΞΕ!

 ΧΡΗΣΤΟΣ ΜΑΒΟΓΛΟΥ - ΕΠΑΛ ΑΛΙΒΕΡΙΟΥ 13

Κατάσταση 1:

def add_item(my_list):

 …

data = [1, 2]

add_item(data)

…

Κατάσταση 2:

def add_item(my_list):

 my_list.append("New")

data = [1, 2]

add_item(data)

…

 ΧΡΗΣΤΟΣ ΜΑΒΟΓΛΟΥ - ΕΠΑΛ ΑΛΙΒΕΡΙΟΥ 14

Β. Επαν-ανάθεση (Reassignment) -> ΔΕΝ αλλάζει η έξω!

Αν μέσα στη συνάρτηση ξαναοριστεί η τιμή της λίστας με τον τελεστή εκχώρησης:

λίστα = άλλη_τιμή

τότε κόβεται ο δεσμός με την αρχική τιμή. Η τοπική παράμετρος σταματάει να
δείχνει στην αρχική λίστα και δείχνει στη νέα. Η αρχική μένει ανέπαφη.

def break_link(my_list):

 my_list = [100, 200]

 print "Inside:", my_list

data = [1, 2]

break_link(data)

print "Outside:", data

 ΧΡΗΣΤΟΣ ΜΑΒΟΓΛΟΥ - ΕΠΑΛ ΑΛΙΒΕΡΙΟΥ 15

Κατάσταση 1:

def break_link(my_list):

 …

data = [1, 2]

break_link(data)

…

Κατάσταση 2:

def break_link(my_list):

 my_list = [100, 200]

 …

data = [1, 2]

break_link(data)

…

 ΧΡΗΣΤΟΣ ΜΑΒΟΓΛΟΥ - ΕΠΑΛ ΑΛΙΒΕΡΙΟΥ 16

Συνοπτικός Πίνακας

Τύπος Δεδομένων Τι κάνουμε μέσα στη συνάρτηση; Επηρεάζεται η έξω μεταβλητή;

Ακέραιος / String x = 5 (Ανάθεση) ΟΧΙ

Λίστα L.append(5) (Τροποποίηση) ΝΑΙ

Λίστα L[0] = 5 (Τροποποίηση στοιχείου) ΝΑΙ

Λίστα L = [1, 2] (Νέα Ανάθεση) ΟΧΙ

Αν οι παράμετροι σε μια συνάρτηση είναι οι:

• Interger, Float, String, Boolean: Είναι σαν να στέλνεις σε κάποιον
μια φωτοτυπία του εγγράφου σου. Ό,τι και να γράψει πάνω, το δικό σου
πρωτότυπο δεν αλλάζει.

• Λίστες: Είναι σαν να δίνεις σε κάποιον το κλειδί για τη θυρίδα σου.

• Αν βάλει κάτι μέσα (append), το βρίσκεις κι εσύ.

• Αν πετάξει το κλειδί που του έδωσες και αγοράσει μια δική του
θυρίδα (=), τότε ό,τι βάλει στη δική του δεν αφορά εσένα.

 ΧΡΗΣΤΟΣ ΜΑΒΟΓΛΟΥ - ΕΠΑΛ ΑΛΙΒΕΡΙΟΥ 17

Ασκήσεις Κατανόησης

Προσπαθήστε να προβλέψετε την έξοδο πριν εκτελέσετε τον κώδικα.

Άσκηση 1

k = 10

def f1():

 k = 20

f1()

print k

Άσκηση 2

lista = [1]

def f2(x):

 x.append(2)

f2(lista)

print lista

Άσκηση 3

score = 50

def f3():

 global score

 score = 100

f3()

print score

 ΧΡΗΣΤΟΣ ΜΑΒΟΓΛΟΥ - ΕΠΑΛ ΑΛΙΒΕΡΙΟΥ 18

Απαντήσεις:

1. 10

2. [1, 2]

3. 100

