

1

Ονοματεπώνυμο: Ημερομηνία:

Γραπτή Αξιολόγηση – Αναζήτηση & Ταξινόμηση (Python 2)
Διάρκεια: 30 λεπτά – Σύνολο μονάδων: 100

ΜΕΡΟΣ Α – Σωστό / Λάθος (20 μονάδες – 4 μονάδες η καθεμία)

1. Στη σειριακή αναζήτηση, ο έλεγχος γίνεται με όλα τα στοιχεία της λίστας.

2. Η δυαδική αναζήτηση μπορεί να εφαρμοστεί σε οποιαδήποτε λίστα,

ταξινομημένη ή όχι.

3. Στον αλγόριθμο ταξινόμησης σε αύξουσα σειρά, γίνεται ανταλλαγή όταν το

στοιχείο στα δεξιά είναι μικρότερο από το στοιχείο στα αριστερά.

4. Η ταξινόμηση σε φθίνουσα σειρά χρησιμοποιεί την ίδια δομή επαναλήψεων με

την αύξουσα· μόνο η συνθήκη σύγκρισης αλλάζει.

5. Στις παράλληλες λίστες (grades, names), σε περίπτωση ίσων βαθμών τα

ονόματα ταξινομούνται αλφαβητικά από το Α προς το Ζ.

ΜΕΡΟΣ Β – Πολλαπλής Επιλογής (40 μονάδες – 8 μονάδες η καθεμία)

6. Στη δυαδική αναζήτηση, ο δείκτης middle υπολογίζεται ως:

(A) (first + last)/2 (B) (first + last)*2 (C) last/2 (D) first+1

7. Στη σειριακή αναζήτηση, ποια μεταβλητή χρησιμοποιείται για να δείξει ότι το

στοιχείο δεν βρέθηκε;

(A) middle (B) found (C) thesi (D) index

8. Στον αλγόριθμο ταξινόμησης μιας λίστας numbers σε αύξουσα σειρά, η

ανταλλαγή των θέσεων δύο στοιχείων εκτελείται όταν:

(A) numbers[j] > numbers[j-1] (B) numbers[j] < numbers[j-1] (C) numbers[i] <

numbers[j] (D) numbers[j] == numbers[j-1]

9. Στην ταξινόμηση παράλληλων λιστών:

(A) πρώτα ταξινομείται η πρώτη λίστα και μετά η δεύτερη (B) η πρώτη λίστα

ταξινομείται σε αύξουσα σειρά και η δεύτερη σε φθίνουσα

(C) μία αντιμετάθεση γίνεται και στις δύο λίστες (D) οι λίστες μπορούν να έχουν

διαφορετικό μέγεθος

10. Στη δυαδική αναζήτηση, όταν το στοιχείο που ψάχνουμε x είναι μικρότερο

από το numbers[middle], μετακινούμε:

(A) το first δεξιά του middle (B) το last αριστερά του middle (C) σταματάμε (D)

middle=0

2

ΜΕΡΟΣ Γ – Συμπλήρωση Κενών σε Κώδικα (40 μονάδες – 10 μονάδες η

καθεμία)

11. Συμπλήρωση κώδικα Σειριακής Αναζήτησης:

for i in ______ : # (A) range(len(numbers)) (B) numbers (C) len(numbers)

 if numbers[i] ______ x : # (A) == (B) < (C) >

 thesi = ______ # (A) i (B) x (C) -1

12. Συμπλήρωση κώδικα Δυαδικής Αναζήτησης (10 μονάδες):

numbers = [4, 8, 15, 16, 23, 42, 44, 49, 52, 55, 59]

x = input()

first = 0

last = len(numbers) - 1

found = ______ # (A) True (B) False (C) 0

while first <= last and found == False:

 middle = ______ # (A) (first + last)/2 (B) (last - first)/2 (C) last/2

 if numbers[middle] == x:

 found = True

 thesi = ______ # (A) middle (B) first (C) last

 else:

 if x < numbers[middle]:

 last = ______ # (A) middle - 1 (B) middle + 1 (C) first

 else:

 first = ______ # (A) middle + 1 (B) middle - 1 (C) 0

3

13. Συμπλήρωση κώδικα Ταξινόμησης σε Αύξουσα Σειρά:

if numbers[j] ______ numbers[j-1]: # (A) < (B) > (C) ==

 numbers[j], numbers[j-1] = ______

(A) numbers[j-1], numbers[j] (B) numbers[j], numbers[j-1] (C) numbers[i]

14. Συμπλήρωση κώδικα Παράλληλης Ταξινόμησης (10 μονάδες):

grades = [14,18,15,18,14,15,16,18]

names = ["JAMES","EMMA","JOHN","OLIVIA","MICHAEL","ISABELLA","AVA","THOMAS"]

n = len(grades)

for i in range(n-1):

 for j in range(n-1, i, -1):

 if grades[j] > grades[j-1] or (grades[j] == grades[j-1] and ______):

 # (A) names[j] < names[j-1] (B) names[j] > names[j-1] (C) grades[j] <

grades[j-1]

 grades[j], grades[j-1] = ______ # (A) grades[j-1], grades[j] (B) 0 (C) j+1

 names[j], names[j-1] = ______ # (A) names[j-1], names[j] (B) names[i] (C) ""

