
3.5 Trigonometric equations 

In many cases, the study of problems that refer to phenomena described by trigonometric 
functions leads to the formulation of equations in which the unknown appears inside a 
trigonometric number. 

Example: (From Exercise B4 of the Algebra textbook, p. 83)). 
The distance x(t) of a piston that moves back and forth inside a 
cylinder from one end of the cylinder, measured in meters, is 
given by the function x(t) = 0,1 + 0,1·ημ(3t), where t denotes time 
in seconds. At which time instants is this distance equal to 0,15 
meters? 
If we attempt to answer this question, we must solve the equation x(t) = 0,15 with respect to 
t. Substituting, we obtain successively: 
x(t) = 0,15 ⇔ 0,1 + 0,1 ∙ ημ(3t) = 0,15 ⇔ 0,1 ∙ ημ(3t) = 0,15 − 0,1 ⇔ 0,1 ∙ ημ(3t) = 0,05

⇔ ημ(3t) =
0,05

0,1
⇔ ημ(3t) =

1

2
 

This equation is not algebraic. The unknown t appears inside a trigonometric number and 
cannot be solved using the methods available to us so far. In order to find all the time 
instants that satisfy the condition, we need new tools and a more systematic way of 
thinking. 
This is precisely what leads us to the study of the basic trigonometric equations, which is 
the subject of this section.  

1. The equation ημx = α 
We will study the equation ημx = α with the help of the trigonometric circle. 
We recall that, for every angle θ, the value ημθ represents the y-coordinate of the point M on 
the trigonometric circle that corresponds to the angle θ. 
Therefore, the equation ημx = α is equivalent to the following geometric problem: 
to find the points of the trigonometric circle whose y-coordinate is equal to α. 

We observe that, since for every real number x it holds that −1 ≤ ημx ≤ 1, if α < −1 or α > 1, 
then the equation ημx = α has no solution. 
  

x(t) 



If α ∈ [−1, 1], we place the number 
α on the sine axis and draw a 
horizontal line, which intersects 
the trigonometric circle at two 
points M and N. Let θ be the angle 
that corresponds to point M. Then 
ημθ = α, and all angles of the form 
2kπ + θ, where k ∈ ℤ, correspond 
to point M. Moreover, due to the 
symmetry of the figure with 
respect to the y-axis, the angle 
π − θ corresponds to point N, as 
well as all angles of the form 2kπ + 
π − θ, where k ∈ ℤ. Therefore, the 
equation can be written 
successively as: 

Example 1: Solve the equation ημx=
1

2
. 

Solution: From the tables of trigonometric values, we find that ημ
π

6
=

1

2
.  Therefore, the 

equation is written as:  

ημx =
1

2
⇔ ημx = ημ

π

6
⇔ x = 2kπ +

π

6
  or  x = 2kπ + π −

π

6
= 2kπ +

5π

6
 (k ∈ ℤ) 

Example 2: Solve the equation ημx=−
√2

2
. 

Solution: We know that ημ
π

4
=

√2

2
 and that opposite angles have opposite sine values. Thus, 

ημ(−
π

4
)=−

√2

2
 and the equation becomes:  

ημx = −
√2

2
⇔ημx = ημ (−

π

4
) ⇔

x = 2kπ + (−
π
4) = 2kπ −

π
4  or

 x = 2kπ + π − (−
π
4) = 2kπ + π +

π
4 = 2kπ +

5π
4

  (k ∈ ℤ) 

Example 3: Solve the equation (6ημx−3)(2ημx+4)=0. 

Solution: We have: 6ημx−3=0 or 2ημx+4=0 ⟺ 6ημx=3 or 2ημx=−4 ⟺ ημx=
1

2
 or ημx=−2. The 

second equation is impossible, while the first one is solved as in Example 1. Therefore, the 

solutions are: x=2kπ+
π

6
 or x=2kπ+

5π

6
 (k∈ ℤ). 

Example 4: Solve the equation ημ(3t) =
1

2
. (Continuation of the Example from the 

introduction of this section). 

ημx = α ⇔ ημx = ημθ ⇔ x = 2kπ + θ  or  x = 2kπ + π − θ (k ∈ ℤ) 

 



Solution: Now, this equation can be solved as follows: 

ημ(3t) =
1

2
⇔ ημ(3t) = ημ

π

6
⇔ 3t = 2kπ +

π

6
  or  3t = 2kπ + π −

π

6
= 2kπ +

5π

6
 

⇔ t =
2kπ

3
+

π

18
 or  t =

2kπ

3
+

5π

18
 (k ∈ ℤ) 

Remark: In some cases, the formulas that give the solutions of a trigonometric equation 
can be unified. This happens in the equations ημx=1, ημx=−1 and ημx=0, which we present 
below: 

1. The equation ημx = 1 can be written equivalently as: ημx=ημ
π

2
⟺ x=2kπ+

π

2
 or 

x=2kπ+π−
π

2
=2kπ+

π

2
 (k∈ ℤ). Therefore, in this case, the formula x=2kπ+

π

2
 (k∈ ℤ) represents 

all the solutions of the equation. 

2. The equation ημx=−1 can be written equivalently as: ημx=ημ(−
π

2
)⟺ x=2kπ−

π

2
 or 

x=2kπ+π+
π

2
=2kπ+

3π

2
 (k∈ ℤ). However, on the trigonometric circle, the two formulas 

correspond to the same point. Thus, all solutions of the equation are given by either of 

these formulas, for example by x=2kπ−
π

2
 (k∈ ℤ). 

3. The equation ημx=0 can be written equivalently as: ημx=ημ0⟺ x=2kπ+0=2kπ or 
x=2kπ+π−0=2kπ+π= (2k+1)π (k∈ ℤ). Thus, the first formula gives all even multiples of π and 
the second gives all odd multiples of π. Therefore, overall we obtain all integer multiples of 
π, which are expressed by the unified formula x=kπ (k∈ ℤ), which gives all the solutions of 
the equation. 

2. The equation συνx = α 
We now move on to the equation συνx = α. On the trigonometric circle, for every angle θ, the 
value συνθ represents the x-coordinate of the point M of the trigonometric circle that 
corresponds to the angle θ. Therefore, following the same reasoning as before, we must 
now find the points of the trigonometric circle whose x-coordinate is equal to α. 
Here as well, for every real number x we have −1 ≤ συνx ≤ 1. Hence, if α < −1 or α > 1, the 
equation συνx = α has no solution.  



If α ∈ [−1, 1], we place the number 
α on the cosine axis and draw a 
vertical line, which intersects the 
trigonometric circle at two points 
M and N. Let θ be the angle 
corresponding to point M. Then we 
have συνθ = α, and point M 
corresponds to all angles of the 
form 2kπ + θ, where k∈ℤ. 
Moreover, due to the symmetry of 
the figure with respect to the 
x-axis, point N corresponds to the 
angle −θ, as well as to all angles of 
the form 2kπ − θ, where k∈ℤ. 
Consequently, the equation can 
be written successively as: 

Example 1: Solve the equation συνx=
√3

2
. 

Solution: From the tables of trigonometric numbers we find that συν
π

6
=

√3

2
 , so the equation 

is written as:  

συνx =
√3

2
⇔ συνx = συν

π

6
⇔ x = 2kπ +

π

6
  or  x = 2kπ −

π

6
 (k ∈ ℤ) 

Example 2: Solve the equation συνx=−
1

2
. 

Solution: We find that συν
π

3
=

1

2
 and, since supplementary angles have opposite cosine 

values, we have συν(π−
π

3
)=−

1

2
, that is συν

2π

3
=−

1

2
. Thus, the equation is written as:  

συνx = −
1

2
⇔ συνx = συν

2π

3
⇔ x = 2kπ +

2π

3
  or  x = 2kπ −

2π

3
  (k ∈ ℤ) 

Example 3: Solve the equation 2συν2x−5συνx−3=0. 
Solution: We set y=συνx and the equation becomes 2y2−5y−3=0. We solve the quadratic 

equation: Δ=(−5)2−4∙2∙(−3)=25+24=49, so y=
5±√49

2∙2
, from which we find y=3 or y=−

1

2
. 

Therefore, we obtain the equations συνx=3 or συνx=−
1

2
. The first equation has no solution, 

while the second is solved as in Example 2. Hence, the solutions are: x=2kπ+
2π

3
 or x=2kπ−

2π

3
 

(k∈ ℤ). 

συνx = α ⇔ συνx = συνθ ⇔ x = 2kπ + θ  or  x = 2kπ − θ  (k ∈ ℤ) 

 



Remark: As in the equation ημx = α, in certain cases the formulas that give the solutions 
can be unified. This happens in the equations συνx=1, συνx=−1 and συνx=0, which we 
present below: 

1. The equation συνx=1 can be written equivalently as: συνx=συν0 ⟺ x=2kπ±0=2kπ (k∈ ℤ). 
Therefore, the formula x=2kπ (k∈ ℤ) gives all the solutions of the equation. 

2. The equation συνx=−1 can be written equivalently as: συνx=συνπ⟺ x=2kπ+π  or x=2kπ−π 
(k∈ ℤ). However, on the trigonometric circle, the two formulas correspond to the same 
point. Thus, all solutions of the equation are given by either of these formulas, for example 
by x=2kπ+π (k∈ ℤ). 

3. The equation συνx=0 can be written equivalently as: συνx=συν
π

2
⟺ x=2kπ+

π

2
 or 

x=2kπ−
π

2
=2kπ−π+

π

2
= (2k−1)π+

π

2
 (k∈ ℤ). Thus, the first formula gives the even multiples of π 

increased by 
π

2
 and the second gives the odd multiples of π increased by 

π

2
. Therefore, 

altogether we obtain all integer multiples of π increased by 
π

2
, which are expressed by the 

unified formula x=kπ+
π

2
 (k∈ ℤ), which gives all the solutions of the equation. 

3. The equation εφx=α 

If α is any real number, we place it on 
the tangent axis, at the point E(1, α). 
The ray OE intersects the 
trigonometric circle at a unique point 
M, to which there corresponds an 

angle θ ∈ (−
π

2
, 

π

2
) such that εφθ = α. 

The equation can then be written as 
εφx = εφθ, which has the unique 

solution x = θ in the interval (−
π

2
, 

π

2
). 

And since the tangent function is 
periodic with period π, all solutions of 
the equation are of the form x=kπ+θ, 
where k∈ℤ. 

(In the figure, the solution x = π + θ is 
also shown; this is the angle that 
corresponds to the point N, the 
second point at which the line OE 
intersects the trigonometric circle.)  



Therefore, the equation has solutions for every α∈IR, which are found as follows: 

Example 1: Solve the equation εφx=√3. 

Solution: From the tables of trigonometric values, we find that εφ
π

3
=√3.  Therefore, the 

equation can be written as:  

εφx = √3 ⇔ εφx = εφ
π

3
⇔ x = kπ +

π

3
   (k ∈ ℤ) 

Example 2: Solve the equation εφx=−1. 

Solution: We find that εφ
π

4
=1 and, since opposite angles have opposite tangents, we have 

εφ(−
π

4
)=−1.  Thus, the equation is written as:  

εφx = −1 ⇔ εφx = εφ (−
π

4
) ⇔ x = kπ −

π

4
    (k ∈ ℤ) 

Example 3: Solve the equation εφ(2x−
π

3
)=1. 

Solution: We find that εφ
π

4
=1, so the equation becomes: 

εφ (2x −
π

3
) = εφ

π

4
⇔ 2x −

π

3
= kπ +

π

4
⇔ 2x = kπ +

π

4
+

π

3
⇔ 2x = kπ +

7π

12
 

⇔ x =
kπ

2
+

7π

24
    (k ∈ ℤ) 

4. The equation σφx=α 

 Using procedures analogous to those applied to the equation εφx = α, we can show that an 
equation of the form σφx = α has solutions for every α∈IR, given by the same general 
solution formula: 

Example: Solve the equation σφx=−√3. 

Solution: From the tables of trigonometric values we find that σφ
π

6
=√3,  and, since opposite 

angles have opposite cotangents, it follows that σφ(−
π

6
)  =−√3.  Therefore, the equation can 

be written as: 

σφx = −√3 ⇔ σφx = σφ (−
π

6
) ⇔ x = kπ −

π

6
    (k ∈ ℤ) 

Remark 
Since the functions εφx and σφx are not defined for all real numbers x, in more complex 
trigonometric equations – such as those we will study in the next unit − we must check 
whether the solutions obtained satisfy the corresponding domain restrictions: 

εφx = α ⇔ εφx = εφθ ⇔ x = kπ + θ   (k ∈ ℤ) 

 

σφx = α ⇔ σφx = σφθ ⇔ x = kπ + θ   (k ∈ ℤ) 

 



• Every angle appearing inside an εφ must be different from kπ+
π

2
, where k∈ ℤ, or 

equivalently, its συν must be different from 0. 
• Every angle appearing inside a σφ must be different from kπ, where k∈ ℤ, or equivalently, 

its ημ must be different from 0. 

5. Composite trigonometric equations 

In the previous sections, we saw how to solve the basic trigonometric equations ημx=α, 
συνx=α, εφx=α και σφx=α. In many cases, however, equations arise that cannot be reduced 
directly to one of the above forms and require additional manipulations. We will deal with 
such equations in this section. 

Depending on the way we approach them, we classify them into the following categories: 
I) Searching for solutions within a given interval 
II) Use of trigonometric identities 
III) Change of trigonometric number (reduction to the first quadrant) 

Next, we will see characteristic examples from each category. 

I) Equations with solution search in a given interval 

A trigonometric equation has infinitely many solutions. However, in many cases we are 
asked to find only those solutions that belong to a specific interval. In this case, after finding 
the general form of the solutions, we check which of them belong to the given interval. 

Example 1: Solve the equation ημ(3t)=− 
1

2
 in the interval [0,2π]. 

Solution: First, we find the general form of the solutions: 

ημ(3t) = −
1

2
⇔ ημ(3t) = −ημ

π

6
⇔ ημ(3t) = ημ (−

π

6
) ⇔

3t = 2kπ −
π
6   or                          

3t = 2kπ + π +
π
6 = 2kπ +

7π
6

⇔
t =

2kπ
3 −

π
18   or

t =
2kπ

3 +
7π
18   

  (k ∈ ℤ) 

Next, we check which solutions belong to the interval [0, 2π], that is, which satisfy the 
inequality 0 ≤ t ≤ 2π. We substitute t from each solution formula and solve the resulting 
inequalities with respect to k. From the first formula: 

0 ≤
2kπ

3
−

π

18
≤ 2π ⇔ 0 ≤ 18 ∙

2kπ

3
− 18 ∙

π

18
≤ 18 ∙ 2π ⇔ 0 ≤ 12kπ − π ≤ 36π ⇔ 

π ≤ 12kπ ≤ 37π ⇔
1

12
≤ k ≤

37

12
 

Since k∈Z, we obtain k=1 or k=2 or k=3. Therefore, the first formula gives the solutions 

t =
2π

3
−

π

18
=

11π

18
, t =

4π

3
−

π

18
=

23π

18
, t = 2π −

π

18
=

35π

18
 

all of which belong to the interval [0,2π]. Similarly, from the second formula: 



0 ≤
2kπ

3
+

7π

18
≤ 2π ⇔ 0 ≤ 12kπ + 7π ≤ 36π ⇔ −7π ≤ 12kπ ≤ 29π ⇔ −

7

12
≤ k ≤

29

12
 

Since k∈Z, we obtain k=0 or k=1 or k=2. Thus, the second formula gives the solutions  

t =
7π

18
, t =

2π

3
+

7π

18
=

19π

18
, t =

4π

3
+

7π

18
=

31π

18
 

which also belong to the interval [0,2π]. 

Comment: In the previous example, as in other similar cases, two different solution 
formulas arise. Therefore, we need to solve two inequalities with respect to k, one for each 
formula. If the equation belonged to a case where the solution formulas could be unified, 
the procedure would be simpler, since checking a single formula would be sufficient. This is 
why it is useful to unify solution formulas whenever this is possible. 

II) Equations using trigonometric identities 

In some trigonometric equations, trigonometric numbers appear with powers or in 
combinations that do not allow a direct reduction to one of the basic forms. In such cases, 
we use appropriate trigonometric identities in order to simplify the equation and transform 
it into a familiar form. 

Example 2: Solve the equation ημ²x + 5συν²x = 4. 
Solution: We use the identity ημ²x + συν²x = 1, and the equation becomes: 

ημ2x + συν2x + 4συν2x = 4 ⇔ 1 + 4συν2x = 4 ⇔ 4συν2x = 3 ⇔ συν2x =
3

4
⇔ 

συνx = ±√
3

4
= ±

√3

2
 

We now solve each of the equations συνx=
√3

2
 and συνx=−

√3

2
. Since συν

π

6
=

√3

2
, we have 

συν(π−
π

6
)=−

√3

2
. Therefore: 

συνx =
√3

2
⇔ συνx = συν

π

6
⇔ 

x = 2kπ ±
π

6
 (kϵℤ) 

συνx = −
√3

2
⇔ συνx = συν

5π

6
⇔ 

x = 2kπ ±
5π

6
 (kϵℤ) 

Remark: If we write x=2kπ+ 
5π

6
=2kπ+π− π

6
=(2k+1)π− π

6
 and similarly 

x=2kπ− 
5π

6
=2kπ−π+ π

6
=(2k−1)π+

π

6
, we see that in this case as well the solution formulas can 

be unified in the form x=kπ± 
π

6
 (kϵℤ). 

Example 3: Solve the equation εφx · σφ(2x) = 1. 

Solution: We use the identity εφx · σφx = 1, therefore εφx=
1

σφx
, and the equation becomes: 

1

σφx
∙ σφ(2x) = 1 ⇔ σφ(2x) = σφx ⇔ 2x = kπ + x ⇔ x = kπ (kϵℤ) 



However, since εφx and σφ(2x) are not defined for every real number x, we must check 
whether the solutions we found are acceptable. εφ(kπ) is defined, but σφ(2kπ) is not 
defined for any integer k. Therefore, all the solutions must be rejected, and the equation is 
impossible. 

Example 4: Solve the equation ημx = √3συνx. 
Solution: If συνx=0, then from the equation we would also have ημx=0, which is impossible, 
since for every angle x we have ημ²x + συν²x = 1. Therefore, συνx≠0. Dividing both sides of 
the equation by συνx, we obtain: 

ημx

συνx
= √3 ⇔ εφx = √3 ⇔ εφx = εφ

π

3
⇔ x = kπ +

π

3
 (k ∈ ℤ) 

III) Equations with change of trigonometric number (reduction to the first quadrant) 

This category includes trigonometric equations in which different trigonometric numbers 
appear, such as ημ together with συν, or εφ together with σφ, of the same or of different 
angles, connected by the sign + or −. In these cases, we try to transform the trigonometric 
number in one side of the equation into another one, using the reduction formulas to the 
first quadrant, in order to obtain a basic trigonometric equation. 

Example 5: Solve the equation εφx = σφ(3x). 
Solution: We transform σφ into εφ using the complementary angle. Thus, the equation 
becomes: 

εφx = εφ (
π

2
− 3x) ⇔ x = kπ +

π

2
− 3x ⇔ 4x = kπ +

π

2
⇔ x =

kπ

4
+

π

8
  (kϵℤ) 

We now must check whether εφx and σφ(3x) are defined for angles of this form. Since 
kπ

4
+

π

8
=

(2k+1)π

8
, x is an odd multiple of 

π

8
, so it cannot be of the form λπ+

π

2
, which is an even 

multiple of 
π

8
. Therefore, εφx is defined. Moreover, 3x is also an odd multiple of 

π

8
, so it is 

always different from λπ, which is an even multiple of 
π

8
. Hence, σφ(3x) is also defined, and 

all the solutions we found are acceptable. 

Example 6: Solve the equation συν(2x) + ημx = 0. 
Solution: The equation becomes συν(2x) = −ημx, that is, συν(2x) = ημ(−x). We transform ημ 
into συν of the complementary angle. Thus, we obtain: 

συν(2x) = συν (
π

2
+ x) ⇔

2x = 2kπ +
π
2 + x ⇔ x = 2kπ +

π
2  or                            

2x = 2kπ −
π
2 − x ⇔ 3x = 2kπ −

π
2 ⇔ x =

2kπ
3 −

π
6

 (kϵℤ) 

We observe that here as well the first type of solutions appears as a special case of the 

second one (for example, for k=1 the second formula gives x=
2π

3
 −π

6
 =π

2
) . Therefore, all 

solutions of the equation are given by x=
2kπ

3
 −π

6
 (kϵℤ). 

  



Exercises 
1. Solve the equations: 

i) ημx=
√2

2
 ii)   συνx=

√2

2
 iii)   εφx=

√3

3
 iv)   σφx=1 

2. Solve the equations: 

i) ημx=−
√3

2
 ii)   συνx=−

√2

2
 iii)   εφx=−

√3

3
 iv)   σφx=−

√3

3
 

3. Solve the equations: 

i) (1−ημx)(2ημx−√3)=0 ii)   (2ημx+√2)(1−συνx)=0 iii)   (2συνx+1)(εφ2x−3)σφx=0 
4. Solve the equations: 

i) ημ(x+
π

3
)=−1 ii)   2συν(3x−

π

4
)=1 iii)   εφ(π

4
−5x)=√3 

5. Solve the equations: 

i) 2ημ2ω+ημω−1=0 ii)   2συν2x+3συνx−2=0 iii)   3εφ2t=3+2√3εφt 
6. Find the solutions of the equation εφx = 1 in the interval (3π, 4π). 

7. Solve the equation εφx=σφ(x+
π

3
) in the interval [0,2π). 

8. Solve the equations: 

i) ημx+συν(π

4
−x)=0 ii)   εφ(2x)−σφ(π

3
+3x)=0 

[Hint: Work as in Examples 5 and 6.] 
9. Solve the equation εφx∙ημx+1=ημx+εφx. 

[Hint: Move all terms to the left-hand side and factorize. Pay attention to the restrictions.] 

10. Solve the equation 
1

συν2x
 −2εφx=4. 

[Hint: 1. Use the trigonometric identity συν2x =
1

1+εφ2x
. 

 2. Express the final solution using an angle θ such that εφθ=3.] 
11. Solve the equations: 

i) ημx−συνx=0 ii)   ημx+συνx=0 
[Hint: You may work either as in Example 6 or as in Example 4.] 
 


