
4.2 Division of Polynomials 

1. The division identity and the division algorithm 
Just as we do with numbers, we can also divide one polynomial by another, provided that 
the divisor is not the zero polynomial. 
Before we proceed, it is important to observe the following: 
the sum, the difference, and the product of two polynomials are always polynomials. On 
the contrary, the division of two polynomials, when we consider them simply as algebraic 
expressions, does not in general result in a polynomial. 

For example, the division 
x2−1

x−1
 = 
(x−1)(x+1)

x−1
 = x + 1 gives a polynomial, whereas the division 

x2−1

x
 gives x − 

1

x
, and this last algebraic expression is not a polynomial. 

A similar situation occurs with integers. The sum, the difference, and the product of two 
integers are integers, while the quotient of two integers is not necessarily an integer. For 
this reason, when we speak about division of integers, we do not mean a simple fraction, 
but a process that leads to a quotient and a remainder. 

Recall that if Δ (“Διαιρετέος”, the dividend) and δ (“διαιρέτης”, the divisor) are two integers 
with δ ≠ 0, then there exist two unique integers π (“πηλίκο”, the quotient) and υ 
(“υπόλοιπο”, the remainder) such that: 

Δ=δ∙π+υ   and   0≤υ<δ 
For example, in the division:  

We have Δ=95 and δ=7. 
We first divided 9 by 7 and wrote the first digit of the quotient, which is 
1. Then we multiplied 1 by the divisor and subtracted it from 9. We 
brought down the second digit of the dividend, 5. Next, we divided the 
number 25 that was formed by 7 to find the next digit of the quotient. 

Thus, we finally obtained π=13 and υ=4. We verify that: 
95=7∙13+4   and   0≤4<7, so the division is complete. 

Using the same idea, we define the division of polynomials. The goal of the division is to 
write the original polynomial as the product of the divisor and another polynomial, called 
the quotient, plus a remainder. 

 More precisely, the following Polynomial Division Theorem holds: 
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  −21 
       4 
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Theorem: If P(x) and δ(x) are two polynomials with δ(x) not the zero polynomial, then 
there exist two polynomials π(x) and υ(x) such that: 

• P(x)=δ(x)∙π(x)+υ(x) (division identity) 
• υ(x) is the zero polynomial or has degree less than the degree of δ(x). 

 



As in the division of integers, P(x) is called the dividend, δ(x) the divisor, π(x) the quotient, 
and υ(x) the remainder of the division. 

Example 1: Perform the division 2x4−3x2+x−1 by x2−2x+3. 

Solution: We use the division layout and follow the steps below: 

1. We write the dividend and the divisor in the division layout. In the dividend, we leave empty 
places for missing terms (here, the x3 term). 

2. We divide the leading terms of the dividend and 
the divisor and write the first term of the quotient. 
Then we multiply this term by all the terms of the 
divisor and subtract the result from the dividend. 
3. We check whether the result of the subtraction is 
the zero polynomial or has degree smaller than the 
degree of the divisor. If yes, the division is completed. 
Otherwise, we repeat Step 2. 

In our example, the first term of the quotient is 2x4:x2=2x2. The result of the first subtraction 
is a polynomial of degree 3, so we continue. The second term of the quotient is 4x3:x2=4x. 
The result of the second subtraction has degree 2, equal to the degree of the divisor, so we 
continue. The third term of the quotient is −x2:x2=−1. The result of the third subtraction is a 
polynomial of degree 1, smaller than the degree of the divisor, so the division is completed. 

Therefore, π(x)= 2x2+4x−1 and υ(x)=−13x+2. The division identity is: 
2x4−3x2+x−1=(x2−2x+3)(2x2+4x−1)−13x+2. 
 
If the remainder of a division is the zero polynomial, then: 

• The division is called exact (“τέλεια”). 
• P(x) is divisible by (“διαιρείται”), or has as a divisor (“έχει διαιρέτη”), or has as a 

factor (“έχει παράγοντα”) δ(x). 
• δ(x) divides (“διαιρεί”), or is a divisor (“είναι διαιρέτης”), or is a factor (“είναι 

παράγοντας”) of P(x). 

Example 2: In Exercise 8 of §4.1, we were looking for a polynomial P(x) such that 
(2x+1)P(x)= 2x³−9x²−3x+1 for every x∈IR. Another solution can be obtained by dividing the 
polynomial 2x³−9x²−3x+1 by 2x+1. 

Solution (2nd method): 
2x³ −9x² −3x +1  2x+1 
−2x3 −x2 
 −10x2 −3x +1  x2−5x+1 
 +10x2 +5x 
    2x +1  The division gives quotient x2−5x+1 and remainder 0. 
  −2x −1  Therefore, the division identity is: 
    0  2x³−9x²−3x+1 =(2x+1)(x2−5x+1), and thus P(x)=x2−5x+1. 

 2x4  −3x2 +x −1 x2−2x+3 
−2x4 +4x3 −6x2     
 4x3 −9x2 +x −1  
 −4x3 +8x2−12x 
   −x2 −11x −1 
    +x2 −2x +3 
   −13x +2 

2x2+4x−1 



Example 3: Polynomial division can also be used in Example 4 of §4.1: Find the real 
numbers α, β, γ such that the polynomial P(x)=3x²−7x+5 can be written in the form 
P(x)=αx(x+1)+βx+γ.  

Solution: This can be solved by dividing P(x) by x(x+1)=x2+x. Try the division in the scheme 
below and write the division identity. 

 

The division identity gives: 
……………………………………. Therefore α=…, β=…, γ=…. 

2. Division by x‒ρ 

When the divisor in a polynomial division is a polynomial of the form x−ρ, the following 
theorems hold. They allow us to determine information about the result of the division 
without actually performing it: 

Proof: Since the divisor has degree 1, the remainder is either the zero polynomial or a 
polynomial of degree 0, that is, a constant polynomial. 
Let υ(x)=υ. Then the division identity is written: P(x)=(x−ρ)∙π(x)+υ. Substituting x=ρ, we 
obtain: P(ρ)=(ρ−ρ)∙π(ρ)+υ=0∙π(ρ)+υ=υ. Therefore, Ρ(ρ)=υ. 
Conclusion: The division identity for P(x):(x-ρ) is written: 

P(x)=(x-ρ)∙π(x)+P(ρ) 

Proof: P(x) has factor x−ρ ⟺ the division P(x):(x−ρ) is exact, that is, the remainder is 0 ⟺ 
Ρ(ρ)=0 ⟺ ρ is a root of P(x). 

Example 4: Find the remainder of the division (18x80−6x50+4x20−2) : (x+1). 

Solution: The divisor is x+1=x−(−1). By Theorem 1, the remainder is 
υ=Ρ(−1)=18(−1)80−6(−1)50+4(−1)20−2=18−6+4−2=14. 

Example 5: Find the values of k for which x−1 is a factor of the polynomial  
P(x) = k2x4 + 3kx2 – 4. 

Solution: For x−1 to be a factor, we must have P(1)=0 ⟺ k2+3k−4=0. Solving the quadratic 
equation, we find k=1 or k=−4. 

3. Horner’s Scheme 

Horner’s scheme is an easy and fast method for performing a polynomial division when the 
divisor is of the form x−ρ.  

3x² −7x +5 x2+x 
……………….. 
 …………. 

……… 

Theorem 1: The remainder of the division of a polynomial P(x) by x−ρ is equal to the 
numerical value of the polynomial P(x) at x=ρ. That is, υ=P(ρ).  

 

Theorem 2: A polynomial P(x) has x−ρ as a factor if and only if ρ is a root of P(x), that is, if 
and only if P(ρ)=0.  

 



For example, to perform the division (2x4−3x3+x−4):(x−2) we construct the following table: 

• In the first row of the table, we write the coefficients of the dividend P(x), inserting 0 
for any missing terms, and on the far right we write ρ. 

• We bring down the first coefficient to the third row. 
• We multiply by ρ and write the result in the second row, one position to the right, 

under the coefficient of the next term. 
• We add the numbers of the first and second rows and write the result in the third 

row. 
• We repeat the last two steps until all coefficients of the dividend have been used. 
• When the process is completed, the rightmost entry of the third row is the remainder 

of the division, that is P(ρ), while the remaining entries of the third row, from left to 
right, are the coefficients of the quotient π(x). 

 

 
2 −3 0 1 −4 2 
 4 2 4 10  

2 1 2 5 6 
 

  Quotient coefficients Remainder, i.e. Ρ(2) 
 

In our example, we find π(x)=2x3+x2+2x+5, υ=P(2)=6, and the division identity is written: 
2x4−3x3+x−4=(x−2)(2x3+x2+2x+5)+6. 

Example 6: Perform the division of the polynomial P(x) = 3x3 + 6x2 – 17x + 20 by x+3. 

Solution: The divisor is x+3=x−(−3), and the Horner scheme is: 
3 +6 −17 +20 −3 
 −9 +9 +24  

3 −3 −8 +44 
Therefore, the remainder is υ=P(−3)=44, the quotient is π(x)=3x2−3x−8 and the division 
identity is: 3x3+6x2–17x+20=(x+3)(3x2−3x−8)+44. 

Example 7: Prove that x−1−√3 is a factor of the polynomial P(x) = x3 − 3x2 + 2. 

Solution: The divisor is x−1−√3=x−(1+√3), and the Horner scheme is: 
1 −3 0 +2 1+√𝟑 
 1+√3 1−√31 −22  

1 −2+√3 1−√3 0 

Since the remainder is υ=0, x−1−√3 is a factor of the polynomial P(x) = x3−3x2+2. 

 
1  On scratch paper, we perform the multiplication: (−2+√3)(1+√3)= −2 − 2√3 + √3 + 3 = 1 − √3. 
2  Also, (1−√3)(1+√3)=1−(√3)2 = 1 − 3 = −2. 

We write ρ 
We write the coefficients of the dividend, inserting 0 for any missing 
terms. 

‧ρ ‧ρ ‧ρ ‧ρ + + + + 



In many cases, a polynomial division problem may require more than one successive 
division by divisors of the form x−ρ. In the following examples, we will apply such 
techniques. 

Example 8: Prove that the polynomial P(x) = 2x4 − 6x3 + 5x2− 3x + 2 is divisible by (x−1)(x−2) 
and find the quotient. 

Solution: First, we divide P(x) by x−1 and then divide the quotient of the first division by x−2. 
The first division is performed using the Horner scheme as follows: 

2 −6 5 −3 2 1 
 2 −4 1 −2  

2 −4 1 −2 0  
Thus, P(x)=(x−1)(2x3−4x2+x−2). We continue with the second division: 

2 −4 1 −2 2 
 4 0 2  

2 0 1 0  
Hence, 2x3−4x2+x−2=(x−2)(2x2+1), therefore P(x)=(x−1)(x−2)(2x2+1). Thus, (x−1)(x−2) is a 
factor of P(x) and the quotient is 2x2+1. 

Example 9: Find the real numbers α, β for which the polynomial P(x) = αxν+1 + βxν + 1 has 
(x−1)2 as a factor. 

Solution: First, P(x) must have x−1 as a factor ⟺ P(1)=0 ⟺ α+β+1=0 ⟺ β=−α−1. 
Then P(x)=αxν+1 + (−α−1)xν + 1. We divide P(x) by x−1. Since the degree of the dividend is ν+1 
(undetermined), we complete the missing intermediate terms with … and take care with the 
counting. 

α −α−1 0 … 0 1 1 
 α −1 … −1 −1  

α −1 −1 … −1 0  
Thus υ=0. The degree of the quotient is one less than the degree of the dividend, so the 
quotient has degree ν. 
Hence π(x)=αxν−xν−1−xν−2−…−x−1 and P(x)=(x−1)π(x). 
For (x−1)2 to be a factor of P(x), x−1 must also be a factor of π(x) ⟺ π(1)=0 ⟺  
α−1 − 1 −⋯− 1⏟          

ν times

= 0 ⇔ α − ν = 0 ⇔ α = ν and therefore β=−ν−1. Then π(x)=(x−1)q(x), 

where q(x) is the quotient of π(x) divided by x−1. Thus, P(x)=(x−1)2q(x), so (x−1)2 is a factor of 
P(x). 

Exercises 
1. Perform the following divisions and write the division identity in each case. 

i) (24x5+20x3−12x2−15) : (6x2+5) 
ii) (2x4+4x3−5x2+3x−2) : (x2+2x−3) 

2.  Using the Horner scheme, find the quotients and the remainders of the following 
divisions: 

i) (−x3+75x−250) : (x+10) 



ii) (4x3+16x2−23x−15) : (x+
1

2
) 

3. If P(x)=−2x3−2x2−x+2409, use the Horner scheme to find P(−11). 
4. Prove that the polynomials of the form x−ρ given in each case are factors of P(x). 

i) P(x)=x4−25x2+144, x+3 

ii) P(x)=16x4−8x3+9x2+14x−4, x−
1

4
  

5. Prove that the following polynomials do not have a factor of the form x−ρ. 
i) P(x)=4x4+7x2+12 ii)   Q(x)=−5x6−3x2−4 

[Hint: Prove that they have no real root ρ.] 
6. Perform the following divisions: 

i) (3x2−2αx−8α) : (x−2α) ii)   (x3+αx2−α2x−α3) : (x+α) 
7. Prove that the polynomial P(x)=(x+1)2ν−x2ν−2x−1, where ν is a positive integer, has as 

factors all the factors of 2x3+3x2+x. 

[Hint: Factorize 2x3+3x2+x = 2x(x+1)(x+
1

2
). Then show that each of the polynomials x=x−0, 

x+1, x+
1

2
 is a factor of P(x).] 

 


